RT Journal Article SR Electronic T1 Conformational resolution of nucleotide cycling and effector interactions for multiple small GTPases in parallel JF bioRxiv FD Cold Spring Harbor Laboratory SP 577437 DO 10.1101/577437 A1 Ryan C. Killoran A1 Matthew J. Smith YR 2019 UL http://biorxiv.org/content/early/2019/03/27/577437.abstract AB Small GTPase proteins alternatively bind GDP/GTP guanine nucleotides to gate signaling pathways that direct most cellular processes. Numerous GTPases are implicated in oncogenesis, particularly three RAS isoforms HRAS, KRAS and NRAS, and the RHO family GTPase RAC1. Signaling networks comprising small GTPases are highly connected, and there is evidence of direct biochemical crosstalk between the functional G-domains of these proteins. The activation potential of a given GTPase is contingent on a co-dependent interaction with nucleotide and a Mg2+ ion, which bind to individual variants via distinct affinities coordinated by residues in the nucleotide binding pocket. Here, we utilize a selective-labelling strategy coupled with real-time nuclear magnetic resonance (NMR) spectroscopy to monitor nucleotide exchange, GTP hydrolysis and effector interactions of multiple small GTPases in a single complex system. We provide new insight on nucleotide preference and the role of Mg2+ in activating both wild-type and oncogenic mutant enzymes. Multiplexing reveals GEF, GAP and effector binding specificity in mixtures of GTPases and establishes the complete biochemical equivalence of the three related RAS isoforms. This work establishes that direct quantitation of the nucleotide-bound conformation is required to accurately resolve GTPase activation potential, as GTPases such as RALA or the G12C mutant of KRAS demonstrate fast exchange kinetics but have a high affinity for GDP. Further, we propose that the G-domains of small GTPases behave autonomously in solution and nucleotide cycling proceeds independent of protein concentration but is highly impacted by Mg2+ abundance.