PT - JOURNAL ARTICLE AU - Liu, Peng AU - Page, David AU - Ahlquist, Paul AU - Ong, Irene M. AU - Gitter, Anthony TI - MPAC: a computational framework for inferring cancer pathway activities from multi-omic data AID - 10.1101/2024.06.15.599113 DP - 2024 Jan 01 TA - bioRxiv PG - 2024.06.15.599113 4099 - http://biorxiv.org/content/early/2024/06/17/2024.06.15.599113.short 4100 - http://biorxiv.org/content/early/2024/06/17/2024.06.15.599113.full AB - Fully capturing cellular state requires examining genomic, epigenomic, transcriptomic, proteomic, and other assays for a biological sample and comprehensive computational modeling to reason with the complex and sometimes conflicting measurements. Modeling these so-called multi-omic data is especially beneficial in disease analysis, where observations across omic data types may reveal unexpected patient groupings and inform clinical outcomes and treatments. We present Multi-omic Pathway Analysis of Cancer (MPAC), a computational framework that interprets multi-omic data through prior knowledge from biological pathways. MPAC uses network relationships encoded in pathways using a factor graph to infer consensus activity levels for proteins and associated pathway entities from multi-omic data, runs permutation testing to eliminate spurious activity predictions, and groups biological samples by pathway activities to prioritize proteins with potential clinical relevance. Using DNA copy number alteration and RNA-seq data from head and neck squamous cell carcinoma patients from The Cancer Genome Atlas as an example, we demonstrate that MPAC predicts a patient subgroup related to immune responses not identified by analysis with either input omic data type alone. Key proteins identified via this subgroup have pathway activities related to clinical outcome as well as immune cell compositions. Our MPAC R package, available at https://bioconductor.org/packages/MPAC, enables similar multi-omic analyses on new datasets.Competing Interest StatementThe authors have declared no competing interest.