TY - JOUR T1 - Comparative genomics of apomictic root-knot nematodes: hybridization, ploidy, and dynamic genome change JF - bioRxiv DO - 10.1101/136085 SP - 136085 AU - Amir Szitenberg AU - Laura Salazar-Jaramillo AU - Vivian C. Blok AU - Dominik R. Laetsch AU - Soumi Joseph AU - Valerie M. Williamson AU - Mark L. Blaxter AU - David H. Lunt Y1 - 2017/01/01 UR - http://biorxiv.org/content/early/2017/05/16/136085.abstract N2 - The Root-Knot Nematodes (RKN; genus Meloidogyne) are important plant parasites causing substantial agricultural losses. The Meloidogyne incognita group (MIG) of species, most of which are obligatory apomicts (mitotic parthenogens), are extremely polyphagous and important problems for global agriculture. While understanding the genomic basis for their variable success on different crops could benefit future agriculture, analyses of their genomes pose challenges due to complex evolutionary histories that may incorporate hybridization, ploidy changes, and chromosomal fragmentation. Here we sequence 19 genomes, representing five species of key RKN collected from different geographic origins. We show that a hybrid origin that predated speciation within the MIG has resulted in each species possessing two divergent genomic copies. Additionally, the MIG apomicts are hypotriploids, with a proportion of one genome present in a second copy, and this proportion varies among species. The evolutionary history of the MIG genomes is revealed to be very dynamic, with non-crossover recombination both homogenising the genomic copies, and acting as a mechanism for generating divergence between species. Interestingly, the automictic MIG species M. floridensis differs from the apomict species in that it has become homozygous throughout much of its genome. ER -