PT - JOURNAL ARTICLE AU - David Mavor AU - Kyle A. Barlow AU - Daniel Asarnow AU - Yuliya Birman AU - Derek Britain AU - Weilin Chen AU - Evan M. Green AU - Lillian R. Kenner AU - Bruk Mensa AU - Leanna S. Morinishi AU - Charlotte Nelson AU - Erin M. Poss AU - Pooja Suresh AU - Ruilin Tian AU - Taylor Arhar AU - Beatrice Ary AU - David Bauer AU - Ian Bergman AU - Rachel Brunetti AU - Cynthia Chio AU - Shizhong Dai AU - Miles Dickinson AU - Susanna Elledge AU - Cole Helsell AU - Nathan Hendel AU - Emily Kang AU - Nadja Kern AU - Matvei Khoroshkin AU - Lisa Kirkemo AU - Greyson Lewis AU - Kevin Lou AU - Wesley Marin AU - Alison Maxwell AU - Peter McTigue AU - Douglas Myers-Turnbull AU - Tamas Nagy AU - Andrew Natale AU - Keely Oltion AU - Sergei Pourmal AU - Gabriel Reder AU - Nicholas Rettko AU - Peter Rohweder AU - Daniel Schwarz AU - Sophia Tan AU - Paul Thomas AU - Ryan Tibble AU - Jason Town AU - Kaitlyn Tsai AU - Fatima Ugur AU - Douglas R. Wassarmann AU - Alexander Wolff AU - Taia Wu AU - Derrick Bogdanoff AU - Jennifer Li AU - Kurt S. Thorn AU - Shane O’Conchúir AU - Danielle L. Swaney AU - Eric D. Chow AU - Hiten Madhani AU - Sy Redding AU - Daniel N. Bolon AU - Tanja Kortemme AU - Joseph L. DeRisi AU - Martin Kampmann AU - James S. Fraser TI - Research Advance: Extending chemical perturbations of the Ubiquitin fitness landscape in a classroom setting AID - 10.1101/139352 DP - 2017 Jan 01 TA - bioRxiv PG - 139352 4099 - http://biorxiv.org/content/early/2017/05/17/139352.short 4100 - http://biorxiv.org/content/early/2017/05/17/139352.full AB - Although the primary protein sequence of ubiquitin (Ub) is extremely stable over evolutionary time, it is highly tolerant to mutation during selection experiments performed in the laboratory. We have proposed that this discrepancy results from the difference between fitness under laboratory culture conditions and the selective pressures in changing environments over evolutionary time scales. Building on our previous work (Mavor et al 2016), we used deep mutational scanning to determine how twelve new chemicals (3-Amino-1,2,4-triazole, 5-fluorocytosine, Amphotericin B, CaCl2, Cerulenin, Cobalt Acetate, Menadione, Nickel Chloride, p-fluorophenylalanine, Rapamycin, Tamoxifen, and Tunicamycin) reveal novel mutational sensitivities of ubiquitin residues. We found sensitization of Lys63 in eight new conditions. In total, our experiments have uncovered a sensitizing condition for every position in Ub except Ser57 and Gln62. By determining the Ubiquitin fitness landscape under different chemical constraints, our work helps to resolve the inconsistencies between deep mutational scanning experiments and sequence conservation over evolutionary timescales.Builds on Mavor D, Barlow KA, Thompson S, Barad BA, Bonny AR, Cario CL, Gaskins G, Liu Z, Deming L, Axen SD, Caceres E, Chen W, Cuesta A, Gate R, Green EM, Hulce KR, Ji W, Kenner LR, Mensa B, Morinishi LS, Moss SM, Mravic M, Muir RK, Niekamp S, Nnadi CI, Palovcak E, Poss EM, Ross TD, Salcedo E, See S, Subramaniam M, Wong AW, Li J, Thorn KS, Conchúir SÓ, Roscoe BP, Chow ED, DeRisi JL, Kortemme T, Bolon DN, Fraser JS. Determination of Ubiquitin Fitness Landscapes Under Different Chemical Stresses in a Classroom Setting. eLife. 2016.Impact Statement We organized a project-based course that used deep mutational scanning in multiple chemical conditions to resolve the inconsistencies between tolerance to mutations in laboratory conditions and sequence conservation over evolutionary timescales.