RT Journal Article SR Electronic T1 Organic macromolecules transport a significant proportion of the calcium precursor for nacre formation JF bioRxiv FD Cold Spring Harbor Laboratory SP 2024.01.28.577631 DO 10.1101/2024.01.28.577631 A1 Macías-Sánchez, Elena A1 Huang, Xing A1 Willinger, Marc G. A1 Rodríguez-Navarro, Alejandro A1 Checa, Antonio YR 2024 UL http://biorxiv.org/content/early/2024/10/01/2024.01.28.577631.abstract AB The mechanism of nacre formation in gastropods involves a vesicular system that transports organic and mineral precursors from the mantle epithelium to the mineralization chamber. Between them lies the surface membrane, a thick organic structure that covers the mineralization chamber and the forming nacre. The surface membrane is a dynamic structure that grows by the addition of vesicles on the outer side and recedes by the formation of interlamellar membranes on the inner side. By using a combination of electron microscopy imaging and spectroscopy, we have monitored the journey of the vesicles from the mantle epithelium to the mineralization chamber, focusing on the elemental composition of the organic structures at each stage. Our data reveal that transport occurs in lipid bilayer vesicles through exocytosis from the outer mantle epithelium. After release into the surface membrane, chitin undergoes a process of self-assembly and interaction with proteins, resulting in progressive changes of the internal structure of the surface membrane until the final structure of the interlamellar membranes is acquired. Finally, these detach from the inner side of the surface membrane. Elemental analysis revealed the transport of a considerable amount of calcium bound to proteins, likely forming calcium-protein complexes.Competing Interest StatementThe authors have declared no competing interest.