TY - JOUR T1 - Rare non-coding variants are associated with plasma lipid traits in a founder population JF - bioRxiv DO - 10.1101/141960 SP - 141960 AU - Catherine Igartua AU - Sahar V Mozaffari AU - Dan L Nicolae AU - Carole Ober Y1 - 2017/01/01 UR - http://biorxiv.org/content/early/2017/05/24/141960.abstract N2 - Founder populations are ideally suited for studies on the clinical effects of alleles that are rare in general populations but occur at higher frequencies in these isolated populations. Whole genome sequencing in 98 South Dakota Hutterites, a founder population of European descent, and subsequent imputation to the Hutterite pedigree revealed 660,238 single nucleotide polymorphisms (SNPs; 98.9% non-coding) that are rare (<1%) or absent in European populations, but occur at frequencies greater than 1% in the Hutterites. We examined the effects of these rare in European variants on plasma levels of LDL cholesterol (LDL-C), HDL cholesterol (HDL-C), total cholesterol and triglycerides (TG) in 828 Hutterites and applied a Bayesian hierarchical framework to prioritize potentially causal variants based on functional annotations. We identified two novel non-coding rare variants associated with LDL-C (rs17242388 in LDLR) and HDL-C (rs189679427 between GOT2 and APOOP5), and replicated previous associations of a splice variant in APOC3 (rs138326449) with TG and HDL-C. All three variants are at well-replicated loci in genome wide association study (GWAS) but are independent from and have larger effect sizes than the known common variation in these regions. We also identified variants at two novel loci (rs191020975 in EPHA6 and chr1:224811120 in CNIH3) at suggestive levels of significance with LDL-C. Candidate expression quantitative loci (eQTL) analyses in lymphoblastoid cell lines (LCLs) in the Hutterites suggest that these rare non-coding variants are likely to mediate their effects on lipid traits by regulating gene expression. Overall, we provide insights into the mechanisms regulating lipid traits and potentially new therapeutic targets. ER -