RT Journal Article SR Electronic T1 Theory on the rate equation of Michaelis-Menten type single-substrate enzyme catalyzed reactions JF bioRxiv FD Cold Spring Harbor Laboratory SP 143396 DO 10.1101/143396 A1 Rajamanickam Murugan YR 2017 UL http://biorxiv.org/content/early/2017/05/29/143396.abstract AB Analytical solution to the Michaelis-Menten (MM) rate equations for single-substrate enzyme catalysed reaction is not known. Here we introduce an effective scaling scheme and identify the critical parameters which can completely characterize the entire dynamics of single substrate MM enzymes. Using this scaling framework, we reformulate the differential rate equations of MM enzymes over velocity-substrate, velocity-product, substrate-product and velocity-substrate-product spaces and obtain various approximations for both pre- and post-steady state dynamical regimes. Using this framework, under certain limiting conditions we successfully compute the timescales corresponding to steady state, pre- and post-steady states and also compute the approximate steady state values of velocity, substrate and product. We further define the dynamical efficiency of MM enzymes as the ratio between the reaction path length in the velocity-substrate-product space and the average reaction time required to convert the entire substrate into product. Here dynamical efficiency characterizes the phase-space dynamics and it would tell us how fast an enzyme can clear a harmful substrate from the environment. We finally perform a detailed error level analysis over various pre- and post-steady state approximations along with the already existing quasi steady state approximations and progress curve models and discuss the positive and negative points corresponding to various steady state and progress curve models.