%0 Journal Article %A Gerald N. Pho %A Michael J. Goard %A Jonathan Woodson %A Benjamin Crawford %A Mriganka Sur %T Task-dependent representations of stimulus and choice in mouse parietal cortex %D 2017 %R 10.1101/144592 %J bioRxiv %P 144592 %X The posterior parietal cortex (PPC) has been implicated in perceptual decisions, but whether its role is specific to sensory processing or sensorimotor transformation is not well understood. To distinguish these possibilities, we trained mice of either sex to perform a visual discrimination task and imaged the activity of PPC populations during both engaged behavior and passive viewing. Unlike neurons in primary visual cortex (V1), which responded robustly to stimuli in both conditions, most neurons in PPC responded exclusively during task engagement. However, PPC responses were heterogeneous, with a smaller subset of neurons exhibiting stimulus-driven, contrast-dependent responses in both conditions. Neurons in PPC also exhibit stronger modulation by noise correlations relative to V1, as illustrated by a generalized linear model that takes into account both task variables and between-neuron correlations. To test whether PPC responses primarily encoded the stimulus or the learned sensorimotor contingency, we imaged the same neurons before and after re-training mice on a reversed task contingency. Unlike V1 neurons, most PPC neurons exhibited a dramatic shift in selectivity after re-training and reflected the new sensorimotor contingency, while a smaller subset of neurons preserved their stimulus selectivity. Mouse PPC is therefore strongly task-dependent, contains heterogeneous populations sensitive to stimulus and choice, and may play an important role in the flexible transformation of sensory inputs into motor commands.Significance Statement Perceptual decision making involves both processing of sensory information and mapping that information onto appropriate motor commands via learned sensorimotor associations. While visual cortex (V1) is known to be critical for sensory processing, it is unclear what circuits are involved in the process of sensorimotor transformation. While the mouse posterior parietal cortex (PPC) has been implicated in visual decisions, its specific role has been controversial. By imaging population activity while manipulating task engagement and sensorimotor contingencies, we demonstrate that PPC, unlike V1, is highly task-dependent, heterogeneous, and sensitive to the learned task demands. Our results suggest that PPC is more than a visual area, and may instead be involved in the flexible mapping of visual information onto appropriate motor actions. %U https://www.biorxiv.org/content/biorxiv/early/2017/05/31/144592.full.pdf