PT - JOURNAL ARTICLE AU - M. D. Herron AU - W. C. Ratcliff TI - Trait Heritability in Major Transitions AID - 10.1101/041830 DP - 2017 Jan 01 TA - bioRxiv PG - 041830 4099 - http://biorxiv.org/content/early/2017/07/03/041830.short 4100 - http://biorxiv.org/content/early/2017/07/03/041830.full AB - A crucial component of major transitions theory is that after the transition, adaptation occurs primarily at the level of the new, higher-level unit. For collective-level adaptations to occur, though, collective-level traits must be heritable. Since collective-level trait values are functions of lower-level trait values, collective-level heritability is related to particle-level heritability. However, the nature of this relationship has rarely been explored in the context of major transitions. We examine relationships between particle-level heritability and collective-level heritability for several functions that express collective-level trait value in terms of particle-level trait values. When a collective-level trait value is a linear function of particle-level trait values, the heritability of a collective-level trait is never less than that of the corresponding particle-level trait and is higher under most conditions. For more complicated functions, collective-level heritability is higher under most conditions, but can be lower when the function relating particle to cell-level trait values is sensitive to small fluctuations in the state of the particles within the collective. Rather than being an impediment to major transitions, we show that collective-level heritability superior to that of the lower-level units can often arise ‘for free’, simply as a byproduct of collective formation.