RT Journal Article SR Electronic T1 A triple-hybrid cross reveals a new hybrid incompatibility locus between D. melanogaster and D. sechellia JF bioRxiv FD Cold Spring Harbor Laboratory SP 590588 DO 10.1101/590588 A1 Jacob C. Cooper A1 Ping Guo A1 Jackson Bladen A1 Nitin Phadnis YR 2019 UL http://biorxiv.org/content/early/2019/04/04/590588.abstract AB Hybrid incompatibilities are the result of deleterious interactions between diverged genes in the progeny of two species. In Drosophila, crosses between female D. melanogaster and males from the D. simulans clade (D. simulans, D. mauritiana, D. sechellia) fail to produce hybrid F1 males. When attempting to rescue hybrid F1 males by depleting the incompatible allele of a previously identified hybrid incompatibility gene, we observed robust rescue in crosses of D. melanogaster to D. simulans or D. mauritiana, but no rescue in crosses to D. sechellia. To investigate the genetic basis of D. sechellia resistance to hybrid rescue, we designed a triple-hybrid cross to generate recombinant D. sechellia / D. simulans genotypes. We tested the ability of those genotypes to rescue hybrid males with D. melanogaster, and used whole genome sequencing to measure the D. sechellia / D. simulans allele frequency of viable F1 males. We found that recombinant genotypes were rescued when they contained two specific loci from D. simulans – a region containing previously identified Lethal hybrid rescue (Lhr), and an unknown region of chromosome 3L which we name Sechellia aversion to hybrid rescue (Satyr). Our results show that the genetic basis for the recent evolution of this hybrid incompatibility is simple rather than a highly dispersed effect. Further, these data suggest that fixation of differences at Lhr after the split of the D. simulans clade strengthened the hybrid incompatibility between D. sechellia and D. melanogaster.