RT Journal Article SR Electronic T1 Narrow-sense heritability estimation of complex traits using identity-by-descent information JF bioRxiv FD Cold Spring Harbor Laboratory SP 164848 DO 10.1101/164848 A1 Luke M. Evans A1 Rasool Tahmasbi A1 Matthew Jones A1 Scott I. Vrieze A1 Gonçalo R. Abecasis A1 Sayantan Das A1 Doug W. Bjelland A1 Teresa R. deCandia A1 - Haplotype Reference Consortium A1 Gonçalo Abecasis A1 David Altshuler A1 Carl A Anderson A1 Andrea Angius A1 Jeffrey C Barrett A1 Sonja Berndt A1 Michael Boehnke A1 Dorrett Boomsma A1 Kari Branham A1 Gerome Breen A1 Chad M Brummett A1 Fabio Busonero A1 Harry Campbell A1 Peter Campbell A1 Andrew Chan A1 Sai Chen A1 Emily Chew A1 Massimiliano Cocca A1 Francis S Collins A1 Laura J Corbin A1 Francesco Cucca A1 Petr Danecek A1 Sayantan Das A1 Paul I W de Bakker A1 George Dedoussis A1 Annelot Dekker A1 Olivier Delaneau A1 Marcus Dorr A1 Richard Durbin A1 Aliki-Eleni Farmaki A1 Luigi Ferrucci A1 Lukas Forer A1 Ross M Fraser A1 Timothy Frayling A1 Christian Fuchsberger A1 Stacey Gabriel A1 Ilaria Gandin A1 Paolo Gasparini A1 Christopher E Gillies A1 Arthur Gilly A1 Leif Groop A1 Tabitha Harrison A1 Andrew Hattersley A1 Oddgeir L Holmen A1 Kristian Hveem A1 William Iacono A1 Amit Joshi A1 Hyun Min Kang A1 Hamed Khalili A1 Charles Kooperberg A1 Seppo Koskinen A1 Matthias Kretzler A1 Warren Kretzschmar A1 Alan Kwong A1 James C Lee A1 Shawn Levy A1 Yang Luo A1 Anubha Mahajan A1 Jonathan Marchini A1 Steven McCarroll A1 Mark I McCarthy A1 Shane McCarthy A1 Matt McGue A1 Melvin McInnis A1 Thomas Meitinger A1 David Melzer A1 Massimo Mezzavilla A1 Josine L Min A1 Karen L Mohlke A1 Richard M Myers A1 Matthias Nauck A1 Deborah Nickerson A1 Aarno Palotie A1 Carlos Pato A1 Michele Pato A1 Ulrike Peters A1 Nicola Pirastu A1 Wouter Van Rheenen A1 J Brent Richards A1 Samuli Ripatti A1 Cinzia Sala A1 Veikko Salomaa A1 Matthew G Sampson A1 David Schlessinger A1 Robert E Schoen A1 Sebastian Schoenherr A1 Laura J Scott A1 Kevin Sharp A1 Carlo Sidore A1 P Eline Slagboom A1 Kerrin Small A1 George Davey Smith A1 Nicole Soranzo A1 Timothy Spector A1 Dwight Stambolian A1 Anand Swaroop A1 Morris A Swertz A1 Alexander Teumer A1 Nicholas Timpson A1 Daniela Toniolo A1 Michela Traglia A1 Marcus Tuke A1 Jaakko Tuomilehto A1 Leonard H Van den Berg A1 Cornelia M van Duijn A1 Jan Veldink A1 John B Vincent A1 Uwe Volker A1 Scott Vrieze A1 Klaudia Walter A1 Cisca Wijmenga A1 Cristen Willer A1 James F Wilson A1 Andrew R Wood A1 Eleftheria Zeggini A1 He Zhang A1 Jian Yang A1 Michael E. Goddard A1 Peter M. Visscher A1 Matthew C. Keller YR 2017 UL http://biorxiv.org/content/early/2017/07/17/164848.abstract AB Heritability is a fundamental parameter in genetics. Traditional estimates based on family or twin studies can be biased due to shared environmental or non-additive genetic variance. Alternatively, those based on genotyped or imputed variants typically underestimate narrow-sense heritability contributed by rare or otherwise poorly-tagged causal variants. Identical-by-descent (IBD) segments of the genome share all variants between pairs of chromosomes except new mutations that have arisen since the last common ancestor. Therefore, relating phenotypic similarity to degree of IBD sharing among classically unrelated individuals is an appealing approach to estimating the near full additive genetic variance while avoiding biases that can occur when modeling close relatives. We applied an IBD-based approach (GREML-IBD) to estimate heritability in unrelated individuals using phenotypic simulation with thousands of whole genome sequences across a range of stratification, polygenicity levels, and the minor allele frequencies of causal variants (CVs). IBD-based heritability estimates were unbiased when using unrelated individuals, even for traits with extremely rare CVs, but stratification led to strong biases in IBD-based heritability estimates with poor precision. We used data on two traits in ~120,000 people from the UK Biobank to demonstrate that, depending on the trait and possible confounding environmental effects, GREML-IBD can be applied successfully to very large genetic datasets to infer the contribution of very rare variants lost using other methods. However, we observed apparent biases in this real data that were not predicted from our simulation, suggesting that more work may be required to understand factors that influence IBD-based estimates.