RT Journal Article SR Electronic T1 Effects of agrochemicals on disease severity of Acanthostomum burminis infections (Digenea: Trematoda) in the Asian common toad, Duttaphrynus melanostictus JF bioRxiv FD Cold Spring Harbor Laboratory SP 165795 DO 10.1101/165795 A1 Uthpala A. Jayawardena A1 Jason R. Rohr A1 Priyanie H. Amerasinghe A1 Ayanthi N. Navaratne A1 Rupika S. Rajakaruna YR 2017 UL http://biorxiv.org/content/early/2017/07/19/165795.abstract AB Background Agrochemicals are widely used in many parts of the world posing direct and indirect threats to organisms. Xenobiotic-related disease susceptibility is a common phenomenon and a proposed cause of amphibian declines and malformations. For example, parasitic infections combined with pesticides generally pose greater risk to both tadpoles and adult frogs than either factor alone. Here, we report on experimental effects of lone and combined exposures to cercariae of the digenetic trematode Acanthostomum burminis and ecologically relevant concentrations of (0.5 ppm) four pesticides (insecticides: chlorpyrifos, dimethoate; herbicides: glyphosate, propanil) on the tadpoles and metamorphs of the Asian common toad, Duttaphrynus melanostictus.Results All 48 cercaraie successfully penetrated each host suggesting that the pesticides had no short-term detrimental effect on cercarial penetration abilities. When the two treatments were provided separately, both cercariae and pesticides significantly decreased the survival of tadpoles and metamorphs and increased developmental malformations, such as scoliosis, kyphosis, and skin ulcers. Exposure to cercariae and the two insecticides additively reduced host survival. In contrast, mortality associated with the combination of cercariae and herbicides was less than additive. The effect of cercariae on malformation incidence depended on the pesticide treatment; dimethoate, glyphosate, and propanil reduced the number of cercarial-induced malformations relative to both the control and chlorpyrifos treatments.Conclusions These results show that ecologically relevant concentrations of the tested agrochemicals had minimal effects on trematode infections, in contrast to others studies which showed that these same treatments increased the adverse effects of these infections on tadpoles and metamorphs of the Asian common toad. These findings reinforce the importance of elucidating the complex interactions among xenobiotics and pathogens on sentinel organisms that may be indicators of risk to other biota.