TY - JOUR T1 - The neural representational space of social memory JF - bioRxiv DO - 10.1101/130351 SP - 130351 AU - Sarah L. Dziura AU - James C. Thompson Y1 - 2017/01/01 UR - http://biorxiv.org/content/early/2017/07/20/130351.abstract N2 - Social functioning involves learning about the social networks in which we live and interact; knowing not just our friends, but also who is friends with our friends. Here we utilized a novel incidental learning paradigm and representational similarity analysis (RSA), a functional MRI multivariate pattern analysis technique, to examine the relationship between learning social networks and the brain's response to the faces within the networks. We found that accuracy of learning face pair relationships through observation is correlated with neural similarity patterns to those pairs in the left temporoparietal junction (TPJ), the left fusiform gyrus, and the subcallosal ventromedial prefrontal cortex (vmPFC), all areas previously implicated in social cognition. This model was also significant in portions of the cerebellum and thalamus. These results show that the similarity of neural patterns represent how accurately we understand the closeness of any two faces within a network, regardless of their true relationship. Our findings indicate that these areas of the brain not only process knowledge and understanding of others, but also support learning relations between individuals in groups.Significance Statement Knowledge of the relationships between people is an important skill that helps us interact in a highly social world. While much is known about how the human brain represents the identity, goals, and intentions of others, less is known about how we represent knowledge about social relationships between others. In this study, we used functional neuroimaging to demonstrate that patterns in human brain activity represent memory for recently learned social connections. ER -