RT Journal Article SR Electronic T1 Asymmetric compression of representational space for object animacy categorization under degraded viewing conditions JF bioRxiv FD Cold Spring Harbor Laboratory SP 166660 DO 10.1101/166660 A1 Tijl Grootswagers A1 J. Brendan Ritchie A1 Susan G. Wardle A1 Andrew Heathcote A1 Thomas A. Carlson YR 2017 UL http://biorxiv.org/content/early/2017/07/21/166660.abstract AB Animacy is a robust organizing principle amongst object category representations in the human brain. Using multivariate pattern analysis methods (MVPA), it has been shown that distance to the decision boundary of a classifier trained to discriminate neural activation patterns for animate and inanimate objects correlates with observer reaction times for the same animacy categorization task (Carlson, Ritchie, Kriegeskorte, Durvasula, & Ma, 2014; Ritchie, Tovar, & Carlson, 2015). Using MEG decoding, we tested if the same relationship holds when a stimulus manipulation (degradation) increases task difficulty, which we predicted would systematically decrease the distance of activation patterns from the decision boundary, and increase reaction times. In addition, we tested whether distance to the classifier boundary correlates with drift rates in the Linear Ballistic Accumulator (Brown & Heathcote, 2008). We found that distance to the classifier boundary correlated with reaction time, accuracy, and drift rates in an animacy categorization task. Split by animacy, the correlations between brain and behavior were sustained for longer over the time course for animate than for inanimate stimuli. Interestingly, when examining the distance to the classifier boundary during the peak correlation between brain and behavior, we found that only degraded versions of animate, but not inanimate, objects had systematically shifted towards the classifier decision boundary as predicted. Our results support an asymmetry in the representation of animate and inanimate object categories in the human brain.