%0 Journal Article %A Sheri A. McClerklin %A Soon Goo Lee %A Ron Nwumeh %A Joseph M. Jez %A Barbara N. Kunkel %T Indole-3-Acetaldehyde Dehydrogenase-dependent Auxin Synthesis Contributes to Virulence of Pseudomonas syringae Strain DC3000 %D 2017 %R 10.1101/173302 %J bioRxiv %P 173302 %X The bacterial pathogen Pseudomonas syringae modulates plant hormone signaling to promote infection and disease development. P. syringae uses several strategies to manipulate auxin physiology in Arabidopsis thaliana to promote pathogenesis, including synthesis of indole-3-acetic acid (IAA), the predominant form of auxin in plants, and production of virulence factors that alter auxin responses in the host; however, the role of pathogen-derived auxin in P. syringae pathogenesis is not well understood. Here we demonstrate that P. syringae strain DC3000 produces IAA via a previously uncharacterized pathway and identify a novel indole-3-acetaldehyde dehydrogenase, AldA, that functions in IAA biosynthesis by catalyzing the NAD-dependent formation of IAA from indole-3-acetaldehyde (IAAld). Biochemical analysis and solving of the 1.9 Å resolution x-ray crystal structure reveal key features of AldA for IAA synthesis, including the molecular basis of substrate specificity. Disruption of aldA and a close homolog, aldB, lead to reduced IAA production in culture and reduced virulence on A. thaliana. We use these mutants to explore the mechanism by which pathogen-derived auxin contributes to virulence and show that IAA produced by DC3000 suppresses salicylic acid-mediated defenses in A. thaliana. Thus, auxin is a DC3000 virulence factor that promotes pathogenicity by suppressing host defenses.Author Summary Pathogens have evolved multiple strategies for suppressing host defenses and modulating host physiology to promote colonization and disease development. For example, the plant pathogen Pseudomonas syringae uses several strategies to the manipulate hormone signaling of its hosts, including production of virulence factors that alter hormone responses in and synthesis of plant hormones or hormone mimics. Synthesis of indole-3-acetic acid (IAA), a common form of the plant hormone auxin, by many plant pathogens has been implicated in virulence. However, the role of pathogen-derived IAA during pathogenesis by leaf spotting pathogens such as P. syringae strain DC3000 is not well understood. Here, we demonstrate that P. syringae strain DC3000 uses a previously uncharacterized biochemical pathway to synthesize IAA, catalyzed by a novel aldehyde dehydrogenase, AldA, and carry out biochemical and structural studies of the AldA protein to investigate AldA activity and substrate specificity. We also generate an aldA mutant disrupted in IAA synthesis to show that IAA is a DC3000 virulence factor that promotes pathogenesis by suppressing host defense responses. %U https://www.biorxiv.org/content/biorxiv/early/2017/08/08/173302.full.pdf