TY - JOUR T1 - Separable functions of the PHD finger protein Spp1 in the Set1 and the meiotic DSB forming complexes cooperate for meiotic DSB formation JF - bioRxiv DO - 10.1101/181180 SP - 181180 AU - Céline Adam AU - Raphaël Guérois AU - Anna Citarella AU - Laura Verardi AU - Florine Adolphe AU - Claire Béneut AU - Vérane Sommermeyer AU - Claire Ramus AU - Jérôme Govin AU - Yohann Couté AU - Valérie Borde Y1 - 2017/01/01 UR - http://biorxiv.org/content/early/2017/08/26/181180.abstract N2 - Histone H3K4 methylation is a feature of meiotic recombination hotspots shared by many organisms including plants and mammals. Meiotic recombination is initiated by programmed double-strand break (DSB) formation that in budding yeast takes place in gene promoters and is promoted by histone H3K4 di/trimethylation. This histone modification is recognized by Spp1, a PHD-finger containing protein that belongs to the conserved histone H3K4 methyltransferase Set1 complex. During meiosis, Spp1 binds H3K4me3 and interacts with a DSB protein, Mer2, to promote DSB formation close to gene promoters. How Set1 complex- and Mer2- related functions of Spp1 are connected is not clear. Here, combining genome-wide localization analyses, biochemical approaches and the use of separation of function mutants, we show that Spp1 is present within two distinct complexes in meiotic cells, the Set1 and the Mer2 complexes. Disrupting the Spp1-Set1 interaction mildly decreases H3K4me3 levels and does not affect meiotic recombination initiation. Conversely, the Spp1-Mer2 interaction is required for normal meiotic recombination initiation, but dispensable for Set1 complex-mediated histone H3K4 methylation. Finally, we evidence that Spp1 preserves normal H3K4me3 levels independently of the Set1 complex. We propose a model where the three populations of Spp1 work sequentially to promote recombination initiation: first by depositing histone H3K4 methylation (Set1 complex), next by “reading” and protecting histone H3K4 methylation, and finally by making the link with the chromosome axis (Mer2-Spp1 complex). This work deciphers the precise roles of Spp1 in meiotic recombination and opens perspectives to study its functions in other organisms where H3K4me3 is also present at recombination hotspots.Author summary Meiotic recombination is a conserved pathway of sexual reproduction that is required to faithfully segregate homologous chromosomes and produce viable gametes. Recombination events between homologous chromosomes are triggered by the programmed formation of DNA breaks, which occur preferentially at places called hotspots. In many organisms, these hotspots are located close to a particular chromatin modification, the methylation of lysine 4 of histone H3 (H3K4me3). It was previously shown in the budding yeast model that one protein, Spp1, plays an important function in this process. We further explored the functional link between Spp1 and its interacting partners, and show that Spp1 shows genetically separable functions, by depositing the H3K4me3 mark on the chromatin, “reading” and protecting it, and linking it to the recombination proteins. We provide evidence that Spp1 is in three independent complexes to perform these functions. This work opens perspectives for understanding the process in other eukaryotes such as mammals, where most of the proteins involved are conserved. ER -