PT - JOURNAL ARTICLE AU - Camille A. Chapot AU - Christian Behrens AU - Luke E. Rogerson AU - Tom Baden AU - Sinziana Pop AU - Philipp Berens AU - Thomas Euler AU - Timm Schubert TI - Local signals in mouse horizontal cell dendrites AID - 10.1101/143909 DP - 2017 Jan 01 TA - bioRxiv PG - 143909 4099 - http://biorxiv.org/content/early/2017/09/01/143909.short 4100 - http://biorxiv.org/content/early/2017/09/01/143909.full AB - The mouse retina contains a single type of horizontal cell, a GABAergic interneuron that samples from all cone photoreceptors within reach and modulates their glutamatergic output via parallel feedback mechanisms. Because horizontal cells form an electrically-coupled network, they have been implicated in global signal processing, such as large scale contrast enhancement. Recently, it has been proposed that horizontal cells can also act locally at the level of individual cone photoreceptors. To test this possibility physiologically, we used two-photon microscopy to record light stimulus-evoked Ca2+ signals in cone axon terminals and horizontal cell dendrites as well as glutamate release in the outer plexiform layer. By selectively stimulating the two mouse cone opsins with green and UV light, we assessed whether signals from individual cones remain “isolated” within horizontal cell dendritic tips, or whether they spread across the dendritic arbour. Consistent with the mouse‘s opsin expression gradient, we found that the Ca2+ signals recorded from dendrites of dorsal horizontal cells were dominated by M- and those of ventral horizontal cells by S-opsin activation. The signals measured in neighbouring horizontal cell dendritic tips varied markedly in their chromatic preference, arguing against global processing. Rather, our experimental data and results from biophysically realistic modelling support the idea that horizontal cells can process cone input locally, extending the “classical” view of horizontal cells function. Pharmacologically removing horizontal cells from the circuitry reduced the sensitivity of the cone signal to low frequencies, suggesting that local horizontal cell feedback shapes the temporal properties of cone output.HighlightsLight-evoked Ca2+ signals in horizontal cell dendrites reflect opsin gradientChromatic preferences in neighbouring dendritic tips vary markedlyMouse horizontal cells process cone photoreceptor input locallyLocal horizontal cell feedback shapes the temporal properties of cone outputeTOC Blurb Chapot et al. show that local light responses in mouse horizontal cell dendrites inherit properties, including chromatic preference, from the presynaptic cone photoreceptor, suggesting that their dendrites can provide “private” feedback to cones, for instance, to shape the temporal filtering properties of the cone synapse.