RT Journal Article SR Electronic T1 Ldb1 and Rnf12-dependent regulation of Lhx2 controls the relative balance between neurogenesis and gliogenesis in retina JF bioRxiv FD Cold Spring Harbor Laboratory SP 183285 DO 10.1101/183285 A1 Jimmy de Melo A1 Anand Venkataraman A1 Brian S. Clark A1 Cristina Zibetti A1 Seth Blackshaw YR 2017 UL http://biorxiv.org/content/early/2017/09/04/183285.abstract AB Precise control of the relative ratio of retinal neurons and glia generated during development is essential for visual function. We show that Lhx2, which encodes a LIM-homeodomain transcription factor essential for specification and differentiation of retinal Müller glia, also plays a critical role in the development of retinal neurons. Overexpression of Lhx2, and its transcriptional coactivator Ldb1, triggers cell cycle exit and inhibits both Notch signaling and retinal gliogenesis. Lhx2/Ldb1 overexpression also induced the formation of wide-field amacrine cells (wfACs). In contrast Rnf12, which encodes a negative regulator of LDB1, is necessary for the initiation of retinal gliogenesis. We also show that LHX2 protein binds upstream of multiple neurogenic bHLH factors including Ascl1 and Neurog2, which are necessary for suppression of gliogenesis and wfAC formation respectively, and activates their expression. Finally, we demonstrate that the relative level of the LHX2-LDB1 complex in the retina decreases in tandem with the onset of gliogenesis. These findings show that control of Lhx2 function by Ldb1 and Rnf12 acts as a molecular mechanism underpinning the coordinated differentiation of neurons and Müller glia in postnatal retina.Significance Statement The molecular mechanisms that control the ratio neurons and glia that are generated by neuronal progenitors remain unclear. Here we show that Lhx2, a transcription factor essential for retinal gliogenesis, also controls development of retinal neurons. The Lhx2 coactivator Ldb1 promotes Lhx2-dependent neurogenesis, while the Lhx2 corepressor Rnf12 is necessary and sufficient for retinal gliogenesis. Furthermore, Lhx2 directly regulates expression of bHLH factors that promote neural development, which are necessary for Lhx2-dependent neurogenesis. Finally, we show that levels of the LHX2-LDB1 complex, which activates transcription, drop as gliogenesis begins. Dynamic regulation of Lhx2 activity by Ldb1 and Rnf12 thus controls the relative levels of retinal neurogenesis and gliogenesis, and may have similar functions elsewhere in the developing nervous system.