TY - JOUR T1 - A Rescorla-Wagner Drift-Diffusion Model of Conditioning and Timing JF - bioRxiv DO - 10.1101/184465 SP - 184465 AU - André Luzardo AU - Eduardo Alonso AU - Esther Mondragón Y1 - 2017/01/01 UR - http://biorxiv.org/content/early/2017/09/05/184465.abstract N2 - Computational models of classical conditioning have made significant contributions to the theoretic understanding of associative learning, yet they still struggle when the temporal aspects of conditioning are taken into account. Interval timing models have contributed a rich variety of time representations and provided accurate predictions for the timing of responses, but they usually have little to say about associative learning. In this article we present a unified model of conditioning and timing that is based on the influential Rescorla-Wagner conditioning model and the more recently developed Timing Drift-Diffusion model. We test the model by simulating 10 experimental phenomena and show that it can provide an adequate account for 8, and a partial account for the other 2. We argue that the model can account for more phenomena in the chosen set than these other similar in scope models: CSC-TD, MS-TD, Learning to Time and Modular Theory. A comparison and analysis of the mechanisms in these models is provided, with a focus on the types of time representation and associative learning rule used.Author Summary How does the time of events affect the way we learn about associations between these events? Computational models have made great contributions to our understanding of associative learning, but they usually do not perform very well when time is taken into account. Models of timing have reached high levels of accuracy in describing timed behaviour, but they usually do not have much to say about associations. A unified approach would involve combining associative learning and timing models into a single framework. This article takes just this approach. It combines the influential Rescorla-Wagner associative model with a timing model based on the Drift-Diffusion process, and shows how the resultant model can account for a number of learning and timing phenomena. The article also compares the new model to others that are similar in scope. ER -