PT - JOURNAL ARTICLE AU - Pavel A. Brodskiy AU - Qinfeng Wu AU - Francisco J. Huizar AU - Dharsan K. Soundarrajan AU - Cody Narciso AU - Megan K. Levis AU - Ninfamaria Arredondo-Walsh AU - Jianxu Chen AU - Peixian Liang AU - Danny Z. Chen AU - Jeremiah J. Zartman TI - Intercellular calcium signaling is regulated by morphogens during <em>Drosophila</em> wing development AID - 10.1101/104745 DP - 2017 Jan 01 TA - bioRxiv PG - 104745 4099 - http://biorxiv.org/content/early/2017/09/11/104745.short 4100 - http://biorxiv.org/content/early/2017/09/11/104745.full AB - Organ development is driven by a set of patterned inductive signals. However, how these signals are integrated to coordinate tissue patterning is still poorly understood. Calcium ions (Ca2+) are critical signaling components involved in signal integration and are regulated by a core Ca2+ signaling toolkit. Ca2+ signaling encodes a significant fraction of information in cells through both amplitude and frequency-dependent regulation of transcription factors and key regulatory enzymes. A range of intercellular Ca2+ transients, including coordinated oscillations, recently have been reported in Drosophila wing discs. In an accompanying paper, we show that impaired Ca2+ signaling impacts the final size and shape of the wing. Here, we discover specific spatiotemporal signatures of Ca2+ transients during wing disc development. To do so, we developed a new neural-network-based approach for registration of oscillatory signals in organs that frequently move during imaging, and a pipeline for spatiotemporal analysis of intercellular Ca2+ oscillations. As a specific test case, we further demonstrated that the morphogen pathway, Hedgehog, controls frequencies of Ca2+ oscillations uniformly in the tissue and is required for spatial patterning of oscillation amplitudes. Thus, the time-averaged dynamics of spontaneous intercellular Ca2+ transients reflect the morphogenetic signaling state of the tissue during development. This suggests a general mechanism of physiological signaling that provides a memory of morphogenetic patterns. Additionally, our study provides a powerful approach for registering and quantifying oscillatory dynamics in developing organs.