RT Journal Article SR Electronic T1 Large scale variation in the rate of de novo mutation, base composition, divergence and diversity in humans JF bioRxiv FD Cold Spring Harbor Laboratory SP 110452 DO 10.1101/110452 A1 Thomas Smith A1 Peter Arndt A1 Adam Eyre-Walker YR 2017 UL http://biorxiv.org/content/early/2017/09/13/110452.abstract AB It has long been suspected that the rate of mutation varies across the human genome at a large scale based on the divergence between humans and other species. It is now possible to directly investigate this question using the large number of de novo mutations (DNMs) that have been discovered in humans through the sequencing of trios. We show that there is variation in the mutation rate at the 100KB, 1MB and 10MB scale that cannot be explained by variation at smaller scales, however the level of this variation is modest at large scales – at the 1MB scale we infer that ~90% of regions have a mutation rate within 50% of the mean. Different types of mutation show similar levels of variation and appear to vary in concert which suggests the pattern of mutation is relatively constant across the genome and hence unlikely to generate variation in GC-content. We confirm this using two different analyses. We find that genomic features explain less than 50% of the explainable variance in the rate of DNM. As expected the rate of divergence between species and the level of diversity within humans are correlated to the rate of DNM. However, the correlations are weaker than if all the variation in divergence was due to variation in the mutation rate. We provide evidence that this is due the effect of biased gene conversion on the probability that a mutation will become fixed. We find no evidence that linked selection affects the relationship between divergence and DNM density. In contrast to divergence, we find that most of the variation in diversity can be explained by variation in the mutation rate. Finally, we show that the correlation between divergence and DNM density declines as increasingly divergent species are considered.Author summary Using a dataset of 40,000 de novo mutations we show that there is large-scale variation in the mutation rate at the 100KB and 1MB scale. We show that different types of mutation vary in concert and in a manner that is not expected to generate variation in base composition; hence mutation bias is not responsible for the large-scale variation in base composition that is observed across human chromosomes. As expected large-scale variation in the rate of divergence between species and the variation within species across the genome, are correlated to the rate of mutation, but the correlation between divergence and the mutation rate is not as strong as they could be. We show that biased gene conversion is responsible for weakening the correlation. In contrast we find that most of the variation across the genome in diversity can be explained by variation in the mutation rate. Finally, we show that the correlation between the rate of mutation in humans and the divergence between humans and other species, weakens as the species become more divergent.