TY - JOUR T1 - Acute condensin depletion causes genome decompaction without altering the level of global gene expression in <em>Saccharomyces cerevisiae</em> JF - bioRxiv DO - 10.1101/195487 SP - 195487 AU - Matthew Robert Paul AU - Tovah Elise Markowitz AU - Andreas Hochwagen AU - Sevinç Ercan Y1 - 2017/01/01 UR - http://biorxiv.org/content/early/2017/09/28/195487.abstract N2 - Condensins are broadly conserved chromosome organizers that function in chromatin compaction and transcriptional regulation, but to what extent these two functions are linked has remained unclear. Here, we analyzed the effect of condensin inactivation on genome compaction and global gene expression in the yeast Saccharomyces cerevisiae. Spike-in-controlled 3C-seq analysis revealed that acute condensin inactivation leads to a global decrease in close-range chromosomal interactions as well as more specific losses of homotypic tRNA gene clustering. In addition, a condensin-rich topologically associated domain between the ribosomal DNA and the centromere on chromosome XII is lost upon condensin inactivation. Unexpectedly, these large-scale changes in chromosome architecture are not associated with global changes in transcript levels as determined by spike-in-controlled mRNA-seq analysis. Our data suggest that the global transcriptional program of S. cerevisiae is resistant to condensin inactivation and the associated profound changes in genome organization.Significance Statement Gene expression occurs in the context of higher-order chromatin organization, which helps compact the genome within the spatial constraints of the nucleus. To what extent higher-order chromatin compaction affects gene expression remains unknown. Here, we show that gene expression and genome compaction can be uncoupled in the single-celled model eukaryote Saccharomyces cerevisiae. Inactivation of the conserved condensin complex, which also organizes the human genome, leads to broad genome decompaction in this organism. Unexpectedly, this reorganization has no immediate effect on the transcriptome. These findings indicate that the global gene expression program is robust to large-scale changes in genome architecture in yeast, shedding important new light on the evolution and function of genome organization in gene regulation. ER -