PT - JOURNAL ARTICLE AU - Huanle Liu AU - Timothy G. Stephens AU - Raúl A. González-Pech AU - Victor H. Beltran AU - Bruno Lapeyre AU - Pim Bongaerts AU - Ira Cooke AU - David G. Bourne AU - Sylvain Forêt AU - David J. Miller AU - Madeleine J. H. van Oppen AU - Christian R. Voolstra AU - Mark A. Ragan AU - Cheong Xin Chan TI - <em>Symbiodinium</em> genomes reveal adaptive evolution of functions related to symbiosis AID - 10.1101/198762 DP - 2017 Jan 01 TA - bioRxiv PG - 198762 4099 - http://biorxiv.org/content/early/2017/10/05/198762.short 4100 - http://biorxiv.org/content/early/2017/10/05/198762.full AB - Symbiosis between dinoflagellates of the genus Symbiodinium and reef-building corals forms the trophic foundation of the world’s coral reef ecosystems. Here we present the first draft genome of Symbiodinium goreaui (Clade C, type C1: 1.03 Gbp), one of the most ubiquitous endosymbionts associated with corals, and an improved draft genome of Symbiodinium kawagutii (Clade F, strain CS-156: 1.05 Gbp), previously sequenced as strain CCMP2468, to further elucidate genomic signatures of this symbiosis. Comparative analysis of four available Symbiodinium genomes against other dinoflagellate genomes led to the identification of 2460 nuclear gene families that show evidence of positive selection, including genes involved in photosynthesis, transmembrane ion transport, synthesis and modification of amino acids and glycoproteins, and stress response. Further, we identified extensive sets of genes for meiosis and response to light stress. These draft genomes provide a foundational resource for advancing our understanding Symbiodinium biology and the coral-algal symbiosis.