PT - JOURNAL ARTICLE AU - Byoung Il Je AU - Fang Xu AU - Qingyu Wu AU - Lei Liu AU - Robert Meeley AU - David Jackson TI - The CLAVATA receptor FASCIATED EAR2 responds to different CLE peptides by signaling through different downstream effectors AID - 10.1101/194951 DP - 2017 Jan 01 TA - bioRxiv PG - 194951 4099 - http://biorxiv.org/content/early/2017/10/07/194951.short 4100 - http://biorxiv.org/content/early/2017/10/07/194951.full AB - Meristems contain groups of indeterminate stem cells that are critical for organ initiation throughout plant development. The shoot apical meristem (SAM) maintains itself and initiates all shoot organs, such as leaves, floral organs and axillary branch meristems. Development and balanced proliferation of the SAM is regulated by a feedback loop between CLAVATA (CLV) and WUSCHEL (WUS) signaling. CLV signaling is initiated by secretion of the CLV3 peptide ligand, which is perceived directly or indirectly by a number of Leucine-Rich-Repeat (LRR) receptor-like kinases, including CLV1 and BARELY ANY MERISTEM (BAM) 1-3, and RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2), as well as the receptor-like protein CLV2 in a complex with the CORYNE (CRN) pseudokinase. However, CLV2, and its maize ortholog FASCIATED EAR2 (FEA2) appear to function in signaling by several related CLV3/EMBRYO-SURROUNDING REGION (CLE) peptide ligands, including CLV3. Nevertheless, it remains unknown how CLV2 or FEA2 transmit specific signals from distinct CLE peptides. Here we show that FEA2 is involved in signaling from at least 2 distinct CLE peptides, ZmCLE7, a maize CLV3 ortholog, and ZmFON2-LIKE CLE PROTEIN1 (ZmFCP1), a newly identified CLE peptide functioning in SAM regulation. Signaling from these 2 different CLE peptides appears to be transmitted through 2 different candidate downstream effectors, COMPACT PLANT2 (CT2), the alpha subunit of the maize heterotrimeric G protein, and maize CRN. Our data provide a novel framework to understand how diverse signaling peptides can activate different downstream pathways through common receptor proteins.