RT Journal Article SR Electronic T1 Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins JF bioRxiv FD Cold Spring Harbor Laboratory SP 206367 DO 10.1101/206367 A1 Andrew D. Stephens A1 Patrick Z. Liu A1 Edward J. Banigan A1 Luay M. Almassalha A1 Vadim Backman A1 Stephen A. Adam A1 Robert D. Goldman A1 John F. Marko YR 2017 UL http://biorxiv.org/content/early/2017/10/29/206367.abstract AB Nuclear shape and architecture influence gene localization, mechanotransduction, transcription, and cell function. Abnormal nuclear morphology and protrusions termed “blebs” are diagnostic markers for many human afflictions including heart disease, aging, progeria, and cancer. Nuclear blebs are associated with both lamin and chromatin alterations. A number of prior studies suggest that lamins dictate nuclear morphology, but the contributions of altered chromatin compaction remain unclear. We show that chromatin histone modification state dictates nuclear rigidity, and modulating it is sufficient to both induce and suppress nuclear blebs. Treatment of mammalian cells with histone deacetylase inhibitors to increase euchromatin or histone methyltransferase inhibitors to decrease heterochromatin results in a softer nucleus and nuclear blebbing, without perturbing lamins. Oppositely, treatment with histone demethylase inhibitors increases heterochromatin and chromatin nuclear rigidity, which results in reduced nuclear blebbing in lamin B1 null nuclei. Notably, increased heterochromatin also rescues nuclear morphology in a model cell line for the accelerated aging disease Hutchinson-Gilford progeria syndrome caused by mutant lamin A, as well as cells from patients with the disease. Thus, chromatin histone modification state is a major determinant of nuclear blebbing and morphology via its contribution to nuclear rigidity.