PT - JOURNAL ARTICLE AU - De Maio, Nicola AU - Worby, Colin J AU - Wilson, Daniel J AU - Stoesser, Nicole TI - Bayesian Reconstruction of Transmission within Outbreaks using Genomic Variants AID - 10.1101/213819 DP - 2017 Jan 01 TA - bioRxiv PG - 213819 4099 - http://biorxiv.org/content/early/2017/11/08/213819.short 4100 - http://biorxiv.org/content/early/2017/11/08/213819.full AB - Pathogen genome sequencing can reveal details of transmission histories and is a powerful tool in the fight against infectious disease. In particular, within-host pathogen genomic variants identified through heterozygous nucleotide base calls are a potential source of information to identify linked cases and infer direction and time of transmission. However, using such data effectively to model disease transmission presents a number of challenges, including differentiating genuine variants from those observed due to sequencing error, as well as the specification of a realistic model for within-host pathogen population dynamics.Here we propose a new Bayesian approach to transmission inference, BadTrIP (BAyesian epiDemiological TRansmission Inference from Polymorphisms), that explicitly models evolution of pathogen populations in an outbreak, transmission (including transmission bottlenecks), and sequencing error. BadTrIP enables the inference of host-to-host transmission from pathogen sequencing data and epidemiological data. By assuming that genomic variants are unlinked, our method does not require the computationally intensive and unreliable reconstruction of individual haplotypes. Using simulations we show that BadTrIP is robust in most scenarios and can accurately infer transmission events by efficiently combining information from genetic and epidemiological sources; thanks to its realistic model of pathogen evolution and the inclusion of epidemiological data, BadTrIP is also more accurate than existing approaches. BadTrIP is distributed as an open source package (https://bitbucket.org/nicofmay/badtrip) for the phylogenetic software BEAST2.We apply our method to reconstruct transmission history at the early stages of the 2014 Ebola outbreak, showcasing the power of within-host genomic variants to reconstruct transmission events.Author Summary We present a new tool to reconstruct transmission events within outbreaks. Our approach makes use of pathogen genetic information, notably genetic variants at low frequency within host that are usually discarded, and combines it with epidemiological information of host exposure to infection. This leads to accurate reconstruction of transmission even in cases where abundant within-host pathogen genetic variation and weak transmission bottlenecks (multiple pathogen units colonising a new host at transmission) would otherwise make inference difficult due to the transmission history differing from the pathogen evolution history inferred from pathogen isolets. Also, the use of within-host pathogen genomic variants increases the resolution of the reconstruction of the transmission tree even in scenarios with limited within-outbreak pathogen genetic diversity: within-host pathogen populations that appear identical at the level of consensus sequences can be discriminated using within-host variants. Our Bayesian approach provides a measure of the confidence in different possible transmission histories, and is published as open source software. We show with simulations and with an analysis of the beginning of the 2014 Ebola outbreak that our approach is applicable in many scenarios, improves our understanding of transmission dynamics, and will contribute to finding and limiting sources and routes of transmission, and therefore preventing the spread of infectious disease.