%0 Journal Article %A Shubhra Rastogi %A Amini Hwang %A Josolyn Chan %A Jean YJ Wang %T Nuclear Abl Drives miR-34c Transfer by Extracellular Vesicles to Induce Radiation Bystander Effects %D 2017 %R 10.1101/209767 %J bioRxiv %P 209767 %X SUMMARY Ionizing radiation stimulates nuclear accumulation of Abl tyrosine kinase that is required for directly irradiated cells to produce microRNA-34c-containing extracellular vesicles, which transfer the microRNA into non-irradiated cells to induce reactive oxygen species and bystander DNA damage.ABSTRACT Ionizing radiation (IR) activates an array of DNA damage response (DDR) that includes the induction of bystander effects (BE) in cells not targeted by radiation. How DDR pathways in irradiated cells stimulate BE in non-targeted cells is mostly unknown. We show here that extracellular vesicles from irradiated cells (EV-IR) induce reactive oxygen species (ROS) and DNA damage when internalized by un-irradiated cells. We found that EV-IR from Abl-NLS-mutated cells could not induce ROS or DNA damage, and restoration of nuclear Abl rescued those defects. Expanding a previous finding that Abl stimulates miR-34c expression, we show here that nuclear Abl also drives the vesicular secretion of miR-34c. Ectopic miR-34c expression, without irradiation, generated EV-miR-34c capable of inducing ROS and DNA damage. Furthermore, EV-IR from miR34-knockout cells could not induce ROS and raised γH2AX to lesser extent than EV-IR from miR34-wild type cells. These results establish a novel role for the Abl-miR-34c DDR pathway in stimulating radiation-induced bystander effects. %U https://www.biorxiv.org/content/biorxiv/early/2017/11/15/209767.full.pdf