PT - JOURNAL ARTICLE AU - Kristen M. Seiler AU - Sarah E. Waye AU - Wenjun Kong AU - Kenji Kamimoto AU - Adam Bajinting AU - William H. Goo AU - Emily J. Onufer AU - Cathleen Courtney AU - Jun Guo AU - Brad W. Warner AU - Samantha A. Morris TI - Single-Cell Analysis Reveals Regional Reprogramming during Adaptation to Massive Small Bowel Resection in Mice AID - 10.1101/615054 DP - 2019 Jan 01 TA - bioRxiv PG - 615054 4099 - http://biorxiv.org/content/early/2019/04/24/615054.short 4100 - http://biorxiv.org/content/early/2019/04/24/615054.full AB - Background & Aims The small intestine (SI) displays regionality in nutrient and immunological function. Following SI tissue loss (as occurs in short gut syndrome, or SGS), remaining SI must compensate, or ‘adapt’; the capacity of SI epithelium to reprogram its regional identity has not been described. Here, we apply single-cell resolution analyses to characterize molecular changes underpinning adaptation to SGS.Methods Single-cell RNA-sequencing was performed on epithelial cells isolated from distal SI of mice following 50% proximal small bowel resection (SBR) vs. sham surgery. Single-cell profiles were clustered based on transcriptional similarity, reconstructing differentiation events from intestinal stem cells (ISCs) through to mature enterocytes. An unsupervised computational approach to score cell identity was used to quantify changes in regional (proximal vs distal) SI identity, validated using immunofluorescence, immunohistochemistry, qPCR, western blotting, and RNA-FISH.Results Uniform Manifold Approximation and Projection-based clustering and visualization revealed differentiation trajectories from ISCs to mature enterocytes in sham and SBR. Cell identity scoring demonstrated segregation of enterocytes by regional SI identity: SBR enterocytes assumed more mature proximal identities. This was associated with significant upregulation of lipid metabolism and oxidative stress gene expression, which was validated via orthogonal analyses. Observed upstream transcriptional changes suggest retinoid metabolism and proximal transcription factor Creb3l3 drive proximalization of cell identity in response to SBR.Conclusions Adaptation to proximal SBR involves regional reprogramming of ileal enterocytes toward a proximal identity. Interventions bolstering the endogenous reprogramming capacity of SI enterocytes—conceivably by engaging the retinoid metabolism pathway—merit further investigation, as they may increase enteral feeding tolerance, and obviate intestinal failure, in SGS.Synopsis Here, single-cell RNA sequencing reveals interactions between the retinoid metabolism pathway and ‘regional reprogramming’ of distal small intestinal epithelium to a proximal identity following proximal small bowel resection. This provides novel insight into physiological adaptation to short gut syndrome.