PT - JOURNAL ARTICLE AU - Richard Kelwick AU - Luca Ricci AU - Soo Mei Chee AU - David Bell AU - Alexander J. Webb AU - Paul S. Freemont TI - Cell-free prototyping strategies for enhancing the sustainable production of polyhydroxyalkanoates bioplastics AID - 10.1101/225144 DP - 2017 Jan 01 TA - bioRxiv PG - 225144 4099 - http://biorxiv.org/content/early/2017/11/25/225144.short 4100 - http://biorxiv.org/content/early/2017/11/25/225144.full AB - The polyhydroxyalkanoates are a group of microbially-produced biopolymers that have been proposed as sustainable alternatives to several oil-derived plastics. However, polyhydroxyalkanoates are currently more expensive to produce than oil-derived plastics and therefore, more efficient production processes would be desirable. Cell-free transcription-translation-based metabolic engineering strategies have been previously used to optimise several different biosynthetic pathways but not the polyhydroxyalkanoates biosynthetic pathways. Here we have developed several Escherichia coli cell-free transcription-translation-based systems for in vitro prototyping of polyhydroxyalkanoates biosynthetic operons, and also for screening relevant metabolite recycling enzymes. These cell-free transcription-translation reactions were customised through the addition of whey permeate, an industrial waste that has been previously used as a low-cost feedstock for optimising in vivo polyhydroxyalkanoates production. We found that the inclusion of an optimal concentration of whey permeate enhanced relative cell-free GFPmut3b production by ~20% compared to control reactions that did not include whey permeate. An analysis of pH in our cell-free reactions suggests that the observed increase in GFPmut3b production was likely through enhanced ATP generation, as a consequence of the glycolytic processing of lactose present in whey permeate. We also found that whey permeate enhanced cell-free reactions produced ~3μM (R)-3HB-CoA, whilst, coupled cell-free biotransformation/transcription-translation reactions produced a ten-fold greater yield of (R)-3HB-CoA. These reactions were also used to characterise a Clostridium propionicum propionyl CoA transferase enzyme that can recycle Acetyl-CoA. Together our data demonstrate that cell-free approaches can be used to complement in vivo workflows for identifying additional strategies for optimising polyhydroxyalkanoates production.