RT Journal Article SR Electronic T1 Germline murine immunoglobulin IGHV genes in wild-derived and classical inbred strains: a comparison JF bioRxiv FD Cold Spring Harbor Laboratory SP 631754 DO 10.1101/631754 A1 Corey T. Watson A1 Justin T. Kos A1 William S. Gibson A1 Christian E. Busse A1 Leah Newman A1 Gintaras Deikus A1 Melissa Laird Smith A1 Katherine J.L. Jackson A1 Andrew M. Collins YR 2019 UL http://biorxiv.org/content/early/2019/05/08/631754.abstract AB To better understand the subspecies origin of antibody genes in classical inbred mouse strains, the IGH gene loci of four wild-derived mouse strains were explored by analysis of VDJ gene rearrangements. A total of 341 unique IGHV gene sequences were inferred in the wild-derived strains, including 247 sequences that have not previously been reported. The genes of the Non-Obese Diabetic (NOD) strain were also documented, and all but one of the 84 inferred NOD IGHV genes have previously been observed in C57BL/6 mice. This is surprising because the Swiss mouse-derived NOD strain and the C57BL/6 strain have no known shared ancestry. The relationships between the genes of the wild-derived inbred strains and of the C57BL/6, NOD and BALB/c classical inbred strain were then explored. The IGH loci of the C57BL/6 and the MSM/MsJ strains share many sequences, but analysis showed that few sequences are shared with wild-derived strains representing the three major subspecies of the house mouse. There were also few IGHV sequences that were shared by the BALB/c strain and any of the four wild-derived strains. The origins of IGHV genes in the C57BL/6, MSM/MsJ and BALB/c strains therefore remain unclear. These unexpected similarities and differences highlight our lack of understanding of the antibody gene loci of the laboratory mouse, with implications for the interpretation of strain-specific differences in models of antibody-mediated diseases, and of Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) data. These results also suggest that a position-based immunoglobulin gene nomenclature may be unworkable in the mouse.