TY - JOUR T1 - The Group B Streptococcal surface antigen I/II protein, BspC, interacts with host vimentin to promote adherence to brain endothelium and inflammation during the pathogenesis of meningitis JF - bioRxiv DO - 10.1101/544395 SP - 544395 AU - Liwen Deng AU - Brady L. Spencer AU - Joshua A. Holmes AU - Rong Mu AU - Sara Rego AU - Thomas A. Weston AU - Yoonsung Hu AU - Glenda F. Sanches AU - Sunghyun Yoon AU - Nogi Park AU - Prescilla E. Nagao AU - Howard F. Jenkinson AU - Justin A. Thornton AU - Keun Seok Seo AU - Angela H. Nobbs AU - Kelly S. Doran Y1 - 2019/01/01 UR - http://biorxiv.org/content/early/2019/05/10/544395.abstract N2 - Streptococcus agalactiae (Group B Streptococcus, GBS) normally colonizes healthy adults but can cause invasive disease, such as meningitis, in the newborn. To gain access to the central nervous system, GBS must interact with and penetrate brain or meningeal blood vessels; however, the exact mechanisms are still being elucidated. Here, we investigate the contribution of BspC, an antigen I/II family adhesin, to the pathogenesis of GBS meningitis. Disruption of the bspC gene reduced GBS adherence to human cerebral microvascular endothelial cells (hCMEC), while heterologous expression of BspC in non-adherent Lactococcus lactis conferred bacterial attachment. In a murine model of hematogenous meningitis, mice infected with ΔbspC mutants exhibited lower mortality as well as decreased brain bacterial counts and inflammatory infiltrate compared with mice infected with WT GBS strains. Further, BspC was both necessary and sufficient to induce neutrophil chemokine expression. We determined that BspC interacts with the host cytoskeleton component vimentin, and confirmed this interaction using a bacterial two-hybrid assay, microscale thermophoresis, immunofluorescent staining, and imaging flow cytometry. Vimentin null mice were protected from WT GBS infection and also exhibited less inflammatory cytokine production in brain tissue. These results suggest that BspC and the vimentin interaction is critical for the pathogenesis of GBS meningitis.AUTHOR SUMMARY Group B Streptococcus (GBS) typically colonizes healthy adults but can cause severe disease in immune compromised individuals, including newborns. Despite wide-spread intrapartum antibiotic prophylaxis given to pregnant women, GBS remains a leading cause of neonatal meningitis. To cause meningitis, GBS must interact with and penetrate the blood-brain barrier (BBB), which separates bacteria and immune cells in the blood from the brain. In order to develop targeted therapies to treat GBS meningitis, it is important to understand the mechanisms of BBB crossing. Here, we describe the role of the GBS surface factor, BspC, in promoting meningitis and discover the host ligand for BspC, vimentin, which is an intermediate filament protein that is constitutively expressed by endothelial cells. We determined that BspC interacts with the C-terminal domain of cell-surface vimentin to promote bacterial attachment to brain endothelial cells and that purified BspC protein can induce immune signaling pathways. In a mouse model of hematogenous meningitis, we observed that a GBS mutant lacking BspC was less virulent compared to WT GBS and resulted in less inflammatory disease. We also observed that mice lacking vimentin were protected from GBS infection. These results reveal the importance of the BspC-vimentin interaction in the progression of GBS meningitis disease. ER -