@article {Bliven224717, author = {Spencer Bliven and Aleix Lafita and Althea Parker and Guido Capitani and Jose M Duarte}, title = {Automated evaluation of quaternary structures from protein crystals}, elocation-id = {224717}, year = {2017}, doi = {10.1101/224717}, publisher = {Cold Spring Harbor Laboratory}, abstract = {A correct assessment of the quaternary structure of proteins is a fundamental prerequisite to understanding their function, physico-chemical properties and mode of interaction with other proteins. Currently about 90\% of structures in the Protein Data Bank are crystal structures, in which the correct quaternary structure is embedded in the crystal lattice among a number of crystal contacts. Computational methods are required to 1) classify all protein-protein contacts in crystal lattices as biologically relevant or crystal contacts and 2) provide an assessment of how the biologically relevant interfaces combine into a biological assembly In our previous work we addressed the first problem with our EPPIC (Evolutionary Protein Protein Interface Classifier) method. Here, we present our solution to the second problem with a new method that combines the interface classification results with symmetry and topology considerations. The new algorithm enumerates all possible valid assemblies within the crystal using a graph representation of the lattice and predicts the most probable biological unit based on the pairwise interface scoring. Our method achieves 85\% precision on a new dataset of 1,481 biological assemblies with consensus of PDB annotations. Although almost the same precision is achieved by PISA, currently the most popular quaternary structure assignment method, we show that, due to the fundamentally different approach to the problem, the two methods are complementary and could be combined to improve biological assembly assignments. The software for the automatic assessment of protein assemblies (EPPIC version 3) has been made available through a web server at http://www.eppic-web.org.Author summary X-ray diffraction experiments are the main experimental technique to reveal the detailed atomic 3-dimensional structure of proteins. In these experiments, proteins are packed into crystals, an environment that is far away from their native solution environment. Determining which parts of the structure reflect the protein{\textquoteright}s state in the cell rather than being artifacts of the crystal environment can be a difficult task. How the different protein subunits assemble together in solution is known as the quaternary structure. Finding the correct quaternary structure is important both to understand protein oligomerization and for the understanding of protein-protein interactions at large. Here we present a new method to automatically determine the quaternary structure of proteins given their crystal structure. We provide a theoretical basis for properties that correct protein assemblies should possess, and provide a systematic evaluation of all possible assemblies according to these properties. The method provides a guidance to the experimental structural biologist as well as to structural bioinformaticians analyzing protein structures in bulk. Assemblies are provided for all proteins in the Protein Data Bank through a public website and database that is updated weekly as new structures are released.}, URL = {https://www.biorxiv.org/content/early/2017/12/28/224717}, eprint = {https://www.biorxiv.org/content/early/2017/12/28/224717.full.pdf}, journal = {bioRxiv} }