PT - JOURNAL ARTICLE AU - J. Alexander Bae AU - Shang Mu AU - Jinseop S. Kim AU - Nicholas L. Turner AU - Ignacio Tartavull AU - Nico Kemnitz AU - Chris S. Jordan AU - Alex D. Norton AU - William M. Silversmith AU - Rachel Prentki AU - Marissa Sorek AU - Celia David AU - Devon L. Jones AU - Doug Bland AU - Amy L. R. Sterling AU - Jungman Park AU - Kevin L. Briggman AU - H. Sebastian Seung AU - the EyeWirers TI - Digital museum of retinal ganglion cells with dense anatomy and physiology AID - 10.1101/182758 DP - 2018 Jan 01 TA - bioRxiv PG - 182758 4099 - http://biorxiv.org/content/early/2018/01/02/182758.short 4100 - http://biorxiv.org/content/early/2018/01/02/182758.full AB - Most digital brain atlases have macroscopic resolution and are confined to a single imaging modality. Here we present a new kind of resource that combines dense maps of anatomy and physiology at cellular resolution. The resource encompasses almost 400 ganglion cells from a single patch of mouse retina, and a digital “museum” provides a 3D interactive view of each cell’s anatomy as well as graphs of its visual responses. To demonstrate the utility of the resource, we use it to divide the inner plexiform layer of the retina into four sublaminae defined by a purely anatomical principle of arbor segregation. We also test the hypothesis that the aggregate neurite density of a ganglion cell type should be approximately uniform (“density conservation”). Finally, we find that ganglion cells arborizing in the inner marginal sublamina of the inner plexiform layer exhibit significantly more sustained visual responses on average.