RT Journal Article SR Electronic T1 Human local adaptation of the TRPM8 cold receptor along a latitudinal cline JF bioRxiv FD Cold Spring Harbor Laboratory SP 251033 DO 10.1101/251033 A1 Felix M. Key A1 Muslihudeen A. Abdul-Aziz A1 Roger Mundry A1 Benjamin M Peter A1 Aarthi Sekar A1 Mauro D’Amato A1 Megan Y. Dennis A1 Joshua M. Schmidt A1 Aida M. Andrés YR 2018 UL http://biorxiv.org/content/early/2018/01/19/251033.abstract AB Ambient temperature is a critical environmental factor for all living organisms. It was likely an important selective force as modern humans recently colonized temperate and cold Eurasian environments. Nevertheless, as of yet we have limited evidence of local adaptation to ambient temperature in populations from those environments. To shed light on this question, we exploit the fact that humans are a cosmopolitan species that inhabits territories under a wide range of temperatures. Focusing on cold perception – which is central to thermoregulation and survival in cold environments— we show evidence of recent local adaptation on TRPM8. This gene encodes for a cation channel that is, to date, the only temperature receptor known to mediate an endogenous response to moderate cold. The upstream variant rs10166942 shows extreme population differentiation, with frequencies that range from 5% in Nigeria to 88% in Finland (placing this SNP in the 0.02% tail of the FST empirical distribution). When all populations are jointly analysed, allele frequencies correlate with latitude and temperature beyond what can be explained by shared ancestry and population substructure. Using a Bayesian approach, we infer that the allele originated and evolved neutrally in Africa, while positive selection raised its frequency to different degrees in Eurasian populations, resulting in allele frequencies that follow a latitudinal cline. We infer strong positive selection, in agreement with ancient DNA showing high frequency of the allele in Europe 3,000 to 8,000 years ago. rs10166942 is important phenotypically because its ancestral allele is protective of migraine. This debilitating disorder varies in prevalence across human populations, with highest prevalence in individuals of European descent –precisely the population with the highest frequency of rs10166942 derived allele. We thus hypothesize that local adaptation on previously neutral standing variation may have contributed to the genetic differences that exist in the prevalence of migraine among human populations today.Author Summary Some human populations were likely under strong pressure to adapt biologically to cold climates during their colonization of non-African territories in the last 50,000 years. Such putative adaptations required genetic variation in genes that could mediate adaptive responses to cold. TRPM8 is potentially one such gene, being the only known receptor for the sensation of moderate cold temperature. We show that a likely regulatory genetic variant nearby TRPM8 has several signatures of positive selection rising its frequency in Eurasian populations during the last 25,000 years. While the genetic variant was and is rare in Africa, it is now common outside of Africa, with frequencies that strongly correlate with latitude and are highest in northern European populations. Interestingly, this same genetic variant has previously been strongly associated with migraine. This suggests that adaptation to cold has potentially contributed to the variation in migraine prevalence that exists among human groups today.