RT Journal Article SR Electronic T1 The importance of geometry in the corneal micropocket angiogenesis assay JF bioRxiv FD Cold Spring Harbor Laboratory SP 193433 DO 10.1101/193433 A1 Grogan, James A. A1 Connor, Anthony J. A1 Pitt-Francis, Joe M. A1 Maini, Philip K. A1 Byrne, Helen M. YR 2018 UL http://biorxiv.org/content/early/2018/01/23/193433.abstract AB The corneal micropocket angiogenesis assay is an experimental protocol for studying vessel network formation, or neovascularization, in vivo. The assay is attractive due to the ease with which the developing vessel network can be observed in the same animal over time. Measurements from the assay have been used in combination with mathematical modeling to gain insights into the mechanisms of angiogenesis. While previous modeling studies have adopted planar domains to represent the assay, the hemispherical shape of the cornea and asymmetric positioning of the angiogenic source can be seen to affect vascular patterning in experimental images. As such, we aim to better understand: i) how the geometry of the assay influences vessel network formation and ii) how to relate observations from planar domains to those in the hemispherical cornea. To do so, we develop a three-dimensional, off-lattice mathematical model of neovascularization in the cornea, using a spatially resolved representation of the assay for the first time. Relative to the detailed model, we predict that the adoption of planar geometries has a noticeable impact on vascular patterning, leading to increased vessel ‘merging’, or anastomosis, in particular when circular geometries are adopted. Significant differences in the dynamics of diffusible aniogenesis simulators are also predicted between different domains. In terms of comparing predictions across domains, the ‘distance of the vascular front to the limbus’ metric is found to have low sensitivity to domain choice, while metrics such as densities of tip cells and vessels and ‘vascularized fraction’ are sensitive to domain choice. Given the widespread adoption and attractive simplicity of planar tissue domains, both in silico and in vitro, the differences identified in the present study should prove useful in relating the results of previous and future theoretical studies of neovascularization to in vivo observations in the cornea.Author summary Neovascularization, or the formation of new blood vessels, is an important process in development, wound healing and cancer. The corneal micropocket assay is used to better understand the process and, in the case of cancer, how it can be controlled with drug therapies for improved patient outcomes. In the assay, the hemispherical shape of the cornea can influence the way the vessel network forms. This makes it difficult to directly compare results from experiments with the predictions of mathematical models or cell culture experiments, which are typically performed on flat substrates or planar matrices. In this study, we use mathematical modeling to investigate how the hemispherical shape of the cornea affects vessel formation and to identify how sensitive different measurements of neovascularization are to geometry.