PT - JOURNAL ARTICLE AU - Ricardo Martínez-García AU - Carey D. Nadell AU - Raimo Hartmann AU - Knut Drescher AU - Juan A. Bonachela TI - Cell adhesion and fluid flow jointly initiate genotype spatial distribution in biofilms AID - 10.1101/243055 DP - 2018 Jan 01 TA - bioRxiv PG - 243055 4099 - http://biorxiv.org/content/early/2018/01/24/243055.short 4100 - http://biorxiv.org/content/early/2018/01/24/243055.full AB - Biofilms are microbial collectives that occupy a diverse array of surfaces. The function and evolution of biofilms are strongly influenced by the spatial arrangement of different strains and species within them, but how spatiotemporal distributions of different genotypes in biofilm populations originate is still underexplored. Here, we study the origins of biofilm genetic structure by combining model development, numerical simulations, and microfluidic experiments using the human pathogen Vibrio cholerae. Using spatial correlation functions to quantify the differences between emergent cell lineage segregation patterns, we find that strong adhesion often, but not always, maximizes the size of clonal cell clusters on flat surfaces. Counterintuitively, our model predicts that, under some conditions, investing in adhesion can reduce rather than increase clonal group size. Our results emphasize that a complex interaction of fluid flow and cell adhesiveness can underlie emergent patterns of biofilm genetic structure. This structure, in turn, has an outsize influence on how biofilm-dwelling populations function and evolve.Author summary Biofilms are bacterial groups, often attached to surfaces, in which a broad variety of cooperative and competitive interactions typically occur. The spatial organization of different strains and species within biofilm communities strongly influences their global functioning, but little is known about how such structure arises. Combining experiments on V. cholerae and simulations of a cellular automaton, we show that the complex interaction between bacterial traits (cell adhesion) and environmental factors (fluid flow intensity) strongly influences the early origins of biofilm spatial structure. In most cases, we found that highly-adhesive strains form larger clusters than the weakly-adhesive ones. Against intuition, however, we also found the opposite outcome: weakly-adhesive tend to form larger clusters than the highly adhesive ones when flows are weak or the population density of colonizing cells is high.