RT Journal Article SR Electronic T1 Printable microscale interfaces for long-term peripheral nerve mapping and precision control JF bioRxiv FD Cold Spring Harbor Laboratory SP 688218 DO 10.1101/688218 A1 Timothy M. Otchy A1 Christos Michas A1 Blaire Lee A1 Krithi Gopalan A1 Jeremy Gleick A1 Dawit Semu A1 Louis Darkwa A1 Bradley J. Holinski A1 Daniel J. Chew A1 Alice E. White A1 Timothy J. Gardner YR 2019 UL http://biorxiv.org/content/early/2019/07/02/688218.abstract AB The nascent field of bioelectronic medicine seeks to decode and modulate peripheral nervous system signals to obtain therapeutic control of targeted end organs and effectors. Current approaches rely heavily on electrode-based devices, but size scalability, material and microfabrication challenges, limited surgical accessibility, and the biomechanically dynamic implantation environment are significant impediments to developing and deploying advanced peripheral interfacing technologies. Here, we present a microscale implantable device – the nanoclip – for chronic interfacing with fine peripheral nerves in small animal models that begins to meet these constraints. We demonstrate the capability to make stable, high-resolution recordings of behaviorally-linked nerve activity over multi-week timescales. In addition, we show that multi-channel, current-steering-based stimulation can achieve a high degree of functionally-relevant modulatory specificity within the small scale of the device. These results highlight the potential of new microscale design and fabrication techniques for the realization of viable implantable devices for long-term peripheral interfacing.