PT - JOURNAL ARTICLE AU - Wynn Legon AU - Priya Bansal AU - Roman Tyshynsky AU - Leo Ai AU - Jerel K. Mueller TI - Transcranial focused ultrasound neuromodulation of the human primary motor cortex AID - 10.1101/234666 DP - 2018 Jan 01 TA - bioRxiv PG - 234666 4099 - http://biorxiv.org/content/early/2018/02/08/234666.short 4100 - http://biorxiv.org/content/early/2018/02/08/234666.full AB - Transcranial focused ultrasound is a form of non-invasive neuromodulation that uses acoustic energy to affect neuronal excitability. The effect of ultrasound on human motor cortical excitability is currently unknown. We apply ultrasound to the primary motor cortex in humans using a novel transcranial ultrasound and magnetic stimulation (TUMS) paradigm that allows for concurrent and concentric ultrasound stimulation with transcranial magnetic stimulation (TMS). This allows for non-invasive inspection of the effect of ultrasound on motor neuronal excitability using the motor evoked potential (MEP) generated by TMS. We test the effect of ultrasound on single pulse MEP recruitment curves and paired pulse protocols including short interval intracortical inhibition (SICI) and intracortical facilitation (ICF). We also test the longevity of the effect and the effect of ultrasound on the cortical silent period in a small sub-sample of participants. In addition, we test the effect of ultrasound to motor cortex on a stimulus response reaction time task. Results show ultrasound inhibits the amplitude of single-pulse MEPs and attenuates intracortical facilitation but does not affect intracortical inhibition. Early evidence suggests that ultrasound does not affect cortical silent period duration and that the duration of inhibition may be related to the duration of stimulation. Finally, ultrasound reduces reaction time on a simple stimulus response task. This is the first report of the effect of ultrasound on human motor cortical excitability and motor behavior and confirms previous results in the somatosensory cortex that ultrasound results in effective neuronal inhibition that confers a performance advantage.