%0 Journal Article %A Nadra Al-Husini %A Dylan T. Tomares %A Zechariah Pfaffenberger %A Nisansala S. Muthunayake %A Mohammad A. Samad %A Tiancheng Zuo %A Obaidah Bitar %A James R. Aretakis %A Mohammed-Husain M. Bharmal %A Alisa Gega %A Julie S. Biteen %A W. Seth Childers %A Jared M. Schrader %T BR-bodies provide selectively permeable condensates that stimulate mRNA decay and prevent release of decay intermediates %D 2019 %R 10.1101/690628 %J bioRxiv %P 690628 %X Biomolecular condensates play a key role in organizing RNAs and proteins into membraneless organelles. Bacterial RNP-bodies (BR-bodies) are a biomolecular condensate containing the RNA degradosome mRNA decay machinery, but the biochemical function of such organization remains poorly defined. Here we define the RNA substrates of BR-bodies through enrichment of the bodies followed by RNA-seq. We find that long, poorly translated mRNAs, small RNAs, and antisense RNAs are the main substrates, while rRNA, tRNA, and other conserved ncRNAs are excluded from these bodies. BR-bodies stimulate the mRNA decay rate of enriched mRNAs, helping to reshape the cellular mRNA pool. We also observe that BR-body formation promotes complete mRNA decay, avoiding the build-up of toxic endo-cleaved mRNA decay intermediates. The combined selective permeability of BR-bodies for both, enzymes and substrates together with the stimulation of the sub-steps of mRNA decay provide an effective organization strategy for bacterial mRNA decay. %U https://www.biorxiv.org/content/biorxiv/early/2019/07/05/690628.full.pdf