TY - JOUR T1 - Human Genome Assembly in 100 Minutes JF - bioRxiv DO - 10.1101/705616 SP - 705616 AU - Chen-Shan Chin AU - Asif Khalak Y1 - 2019/01/01 UR - http://biorxiv.org/content/early/2019/07/17/705616.abstract N2 - De novo genome assembly provides comprehensive, unbiased genomic information and makes it possible to gain insight into new DNA sequences not present in reference genomes. Many de novo human genomes have been published in the last few years, leveraging a combination of inexpensive short-read and single-molecule long-read technologies. As long-read DNA sequencers become more prevalent, the computational burden of generating assemblies persists as a critical factor. The most common approach to long-read assembly, using an overlap-layout-consensus (OLC) paradigm, requires all-to-all read comparisons, which quadratically scales in computational complexity with the number of reads. We assert that recently achievements in sequencing technology (i.e. with accuracy ~99% and read length ~10-15k) enables a fundamentally better strategy for OLC that is effectively linear rather than quadratic. Our genome assembly implementation, Peregrine uses sparse hierarchical minimizers (SHIMMER) to index reads thereby avoiding the need for an all-to-all read comparison step. Peregrine can assemble 30x human PacBio CCS read datasets in less than 30 CPU hours and around 100 wall-clock minutes to a high contiguity assembly (N50 > 20Mb). The continued advance of sequencing technologies coupled with the Peregrine assembler enables routine generation of human de novo assemblies. This will allow for population scale measurements of more comprehensive genomic variations -- beyond SNPs and small indels -- as well as novel applications requiring rapid access to de novo assemblies. ER -