PT - JOURNAL ARTICLE AU - Javier A. Caballero AU - Mark D. Humphries AU - Kevin N. Gurney TI - A Probabilistic, Distributed, Recursive Mechanism for Decision-making in the Brain AID - 10.1101/036277 DP - 2018 Jan 01 TA - bioRxiv PG - 036277 4099 - http://biorxiv.org/content/early/2018/02/20/036277.short 4100 - http://biorxiv.org/content/early/2018/02/20/036277.full AB - Decision formation recruits many brain regions, but the procedure they jointly execute is unknown. Here we characterize its essential composition, using as a framework a novel recursive Bayesian algorithm that makes decisions based on spike-trains with the statistics of those in sensory cortex (MT). Using it to simulate the random-dot-motion task, we demonstrate it quantitatively replicates the choice behaviour of monkeys, whilst predicting losses of otherwise usable information from MT. Its architecture maps to the recurrent cortico-basal-ganglia-thalamo-cortical loops, whose components are all implicated in decision-making. We show that the dynamics of its mapped computations match those of neural activity in the sensorimotor cortex and striatum during decisions, and forecast those of basal ganglia output and thalamus. This also predicts which aspects of neural dynamics are and are not part of inference. Our single-equation algorithm is probabilistic, distributed, recursive, and parallel. Its success at capturing anatomy, behaviour, and electrophysiology suggests that the mechanism implemented by the brain has these same characteristics.Author Summary Decision-making is central to cognition. Abnormally-formed decisions characterize disorders like over-eating, Parkinson’s and Huntington’s diseases, OCD, addiction, and compulsive gambling. Yet, a unified account of decisionmaking has, hitherto, remained elusive. Here we show the essential composition of the brain’s decision mechanism by matching experimental data from monkeys making decisions, to the knowable function of a novel statistical inference algorithm. Our algorithm maps onto the large-scale architecture of decision circuits in the primate brain, replicating the monkeys’ choice behaviour and the dynamics of the neural activity that accompany it. Validated in this way, our algorithm establishes a basic framework for understanding the mechanistic ingredients of decisionmaking in the brain, and thereby, a basic platform for understanding how pathologies arise from abnormal function.