PT - JOURNAL ARTICLE AU - Javier I. J. Orozco AU - Theo A. Knijnenburg AU - Ayla O. Manughian-Peter AU - Matthew P. Salomon AU - Garni Barkhoudarian AU - John R. Jalas AU - James S. Wilmott AU - Parvinder Hothi AU - Xiaowen Wang AU - Yuki Takasumi AU - Michael E. Buckland AU - John F. Thompson AU - Georgina V. Long AU - Charles S. Cobbs AU - Ilya Shmulevich AU - Daniel F. Kelly AU - Richard A. Scolyer AU - Dave S. B. Hoon AU - Diego M. Marzese TI - Epigenetic Profiling for the Molecular Classification of Metastatic Brain Tumors AID - 10.1101/268193 DP - 2018 Jan 01 TA - bioRxiv PG - 268193 4099 - http://biorxiv.org/content/early/2018/02/22/268193.short 4100 - http://biorxiv.org/content/early/2018/02/22/268193.full AB - Optimal treatment of brain metastases is often hindered by limitations in diagnostic capabilities. To meet these challenges, we generated genome-scale DNA methylomes of the three most frequent types of brain metastases: melanoma, breast, and lung cancers (n=96). Using supervised machine learning and integration of multiple DNA methylomes from normal, primary, and metastatic tumor specimens (n=1,860), we unraveled epigenetic signatures specific to each type of metastatic brain tumor and constructed a three-step DNA methylation-based classifier (BrainMETH) that categorizes brain metastases according to the tissue of origin and therapeutically-relevant subtypes. BrainMETH predictions were supported by routine histopathologic evaluation. We further characterized and validated the most predictive genomic regions in a large cohort of brain tumors (n=165) using quantitative methylation-specific PCR. Our study highlights the importance of brain tumor-defining epigenetic alterations, which can be utilized to further develop DNA methylation profiling as a critical tool in the histomolecular stratification of patients with brain metastases.