RT Journal Article SR Electronic T1 Age differentiation within grey matter, white matter and between memory and white matter in an adult lifespan cohort JF bioRxiv FD Cold Spring Harbor Laboratory SP 148452 DO 10.1101/148452 A1 Susanne M. M. de Mooij A1 Richard N. A. Henson A1 Lourens J. Waldorp A1 Cam-CAN A1 Rogier A. Kievit YR 2018 UL http://biorxiv.org/content/early/2018/02/26/148452.abstract AB It is well-established that brain structures and cognitive functions change across the lifespan. A longstanding hypothesis called age differentiation additionally posits that the relations between cognitive functions also change with age. To date however, evidence for age-related differentiation is mixed, and no study has examined differentiation of the relationship between brain and cognition. Here we use multi-group Structural Equation Modeling and SEM Trees to study differences within and between brain and cognition across the adult lifespan (18-88 years) in a large (N>646, closely matched across sexes), population-derived sample of healthy human adults from the Cambridge Centre for Ageing and Neuroscience (www.cam-can.org). After factor analyses of grey-matter volume (from T1- and T2-weighted MRI) and white-matter organisation (fractional anisotropy from Diffusion-weighted MRI), we found evidence for differentiation of grey and white matter, such that the covariance between brain factors decreased with age. However, we found no evidence for age differentiation between fluid intelligence, language and memory, suggesting a relatively stable covariance pattern between cognitive factors. Finally, we observed a specific pattern of age differentiation between brain and cognitive factors, such that a white matter factor, which loaded most strongly on the hippocampal cingulum, became less correlated with memory performance in later life. These patterns are compatible with reorganization of cognitive functions in the face of neural decline, and/or with the emergence of specific subpopulations in old age.Significance statement The theory of age differentiation posits age-related changes in the relationships between cognitive domains, either weakening (differentiation) or strengthening (de-differentiation), but evidence for this hypothesis is mixed. Using age-varying covariance models in a large cross-sectional adult lifespan sample, we found age-related reductions in the covariance among both brain measures (neural differentiation), but no covariance change between cognitive factors of fluid intelligence, language and memory. We also observed evidence of uncoupling (differentiation) between a white matter factor and cognitive factors in older age, most strongly for memory. Together, our findings support age-related differentiation as a complex, multifaceted pattern that differs for brain and cognition, and discuss several mechanisms that might explain the changing relationship between brain and cognition.