RT Journal Article SR Electronic T1 A computational model tracks whole-lung Mycobacterium tuberculosis infection and predicts factors that inhibit dissemination JF bioRxiv FD Cold Spring Harbor Laboratory SP 713701 DO 10.1101/713701 A1 Timothy Wessler A1 Louis R. Joslyn A1 H. Jacob Borish A1 Hannah P. Gideon A1 JoAnne L. Flynn A1 Denise E. Kirschner A1 Jennifer J. Linderman YR 2019 UL http://biorxiv.org/content/early/2019/07/24/713701.abstract AB Mycobacterium tuberculosis (Mtb), the causative infectious agent of tuberculosis (TB), kills more individuals per year than any other infectious agent. Granulomas, the hallmark of Mtb infection, are complex structures that form in lungs, composed of immune cells surrounding bacteria, infected cells, and a caseous necrotic core. While granulomas serve to physically contain and immunologically restrain bacteria growth, some granulomas are unable to control Mtb growth, leading to bacteria and infected cells leaving the granuloma and disseminating, either resulting in additional granuloma formation (local or non-local) or spread to airways or lymph nodes. Dissemination is associated with development of active TB. It is challenging to experimentally address specific mechanisms driving dissemination from TB lung granulomas. Herein, we develop a novel hybrid multi-scale computational model, MultiGran, that tracks Mtb infection within multiple granulomas in an entire lung. MultiGran follows cells, cytokines, and bacterial populations within each lung granuloma throughout the course of infection and is calibrated to multiple non-human primate (NHP) cellular, granuloma, and whole-lung datasets. We show that MultiGran can recapitulate patterns of in vivo local and non-local dissemination, predict likelihood of dissemination, and predict a crucial role for multifunctional CD8+ T cells and macrophage dynamics for preventing dissemination.Author Summary Tuberculosis (TB) is caused by infection with Mycobacterium tuberculosis (Mtb) and kills 3 people per minute worldwide. Granulomas, spherical structures composed of immune cells surrounding bacteria, are the hallmark of Mtb infection and sometimes fail to contain the bacteria and disseminate, leading to further granuloma growth within the lung environment. To date, the mechanisms that determine granuloma dissemination events have not been characterized. We present a computational multi-scale model of granuloma formation and dissemination within primate lungs. Our computational model is calibrated to multiple experimental datasets across the cellular, granuloma, and whole-lung scales of non-human primates. We match to both individual granuloma and granuloma-population datasets, predict likelihood of dissemination events, and predict a critical role for multifunctional CD8+ T cells and macrophage-bacteria interactions to prevent infection dissemination.