RT Journal Article SR Electronic T1 Spatial and temporal PCP protein dynamics coordinate cell intercalation during neural tube closure JF bioRxiv FD Cold Spring Harbor Laboratory SP 278499 DO 10.1101/278499 A1 Mitchell T. Butler A1 John B. Wallingford YR 2018 UL http://biorxiv.org/content/early/2018/03/08/278499.abstract AB Planar cell polarity (PCP) controls the convergent extension cell movements that drive axis elongation in all vertebrates. Though asymmetric localization of core PCP proteins is central to their function, we currently understand little about PCP protein localization as it relates to the subcellular behaviors that drive convergent extension. Here, we have used high magnification time-lapse imaging to simultaneously monitor cell intercalation behaviors and the localization of the PCP proteins Prickle2 and Vangl2. We observed the expected asymmetric enrichment of PCP proteins, but more interestingly, we also observed tight temporal and spatial correlation of PCP protein enrichment with contractile behavior in cell-cell junctions. These patterns of localization were associated with similar pattern of protein turnover at junctions as assessed by FRAP. In fact, dynamic enrichment of PCP proteins was linked more strongly to junction behavior than to spatial orientation. Finally, recruitment of Prickle2 and Vangl2 to cell-cell junctions was temporally and spatially coordinated with planar polarized oscillations of actomyosin enrichment, and all of these dynamic relationships were disrupted when PCP signaling was manipulated. Together, these results provide a dynamic and quantitative view of PCP protein localization during convergent extension and suggest a complex and intimate link between the dynamic localization of core PCP proteins, actomyosin assembly, and polarized junction shrinking during cell intercalation of the closing vertebrate neural tube.