PT - JOURNAL ARTICLE AU - Jingshu Wang AU - Divyansh Agarwal AU - Mo Huang AU - Gang Hu AU - Zilu Zhou AU - Chengzhong Ye AU - Nancy R. Zhang TI - Data Denoising with transfer learning in single-cell transcriptomics AID - 10.1101/457879 DP - 2019 Jan 01 TA - bioRxiv PG - 457879 4099 - http://biorxiv.org/content/early/2019/08/05/457879.short 4100 - http://biorxiv.org/content/early/2019/08/05/457879.full AB - Single-cell RNA sequencing (scRNA-seq) data is noisy and sparse. Here, we show that transfer learning across datasets remarkably improves data quality. By coupling a deep autoencoder with a Bayesian model, SAVER-X extracts transferable gene-gene relationships across data from different labs, varying conditions, and divergent species to denoise target new datasets.