RT Journal Article SR Electronic T1 Adaptive evolution within the gut microbiome of individual people JF bioRxiv FD Cold Spring Harbor Laboratory SP 208009 DO 10.1101/208009 A1 Shijie Zhao A1 Tami D. Lieberman A1 Mathilde Poyet A1 Sean M. Gibbons A1 Mathieu Groussin A1 Ramnik J. Xavier A1 Eric J. Alm YR 2018 UL http://biorxiv.org/content/early/2018/03/09/208009.abstract AB Individual bacterial lineages stably persist for years in the human gut microbiome1–3. However, the potential of these lineages to adapt during colonization of healthy people is not well understood2,4. Here, we assess evolution within individual microbiomes by sequencing the genomes of 602 Bacteroides fragilis isolates cultured from 12 healthy subjects. We find that B. fragilis within-subject populations contain substantial de novo nucleotide and mobile element diversity, which preserve years of within-person evolutionary history. This evolutionary history contains signatures of within-person adaptation to both subject-specific and common selective forces, including parallel mutations in sixteen genes. These sixteen genes are involved in cell-envelope biosynthesis and polysaccharide utilization, as well as yet under-characterized pathways. Notably, one of these genes has been shown to be critical for B. fragilis colonization in mice5, indicating that key genes have not already been optimized for survival in vivo. This lack of optimization, given historical signatures of purifying selection in these genes, suggests that varying selective forces with discordant solutions act upon B. fragilis in vivo. Remarkably, in one subject, two B. fragilis sublineages coexisted at a stable relative frequency over a 1.5-year period despite rapid adaptive dynamics within one of the sublineages. This stable coexistence suggests that competing selective forces can lead to B. fragilis niche-differentiation even within a single person. We conclude that B. fragilis adapts rapidly within the microbiomes of individual healthy people, providing a new route for the discovery of key genes in the microbiome and implications for microbiome stability and manipulation.