RT Journal Article SR Electronic T1 Zinc-α2-Glycoprotein Is An Inhibitor Of Amine Oxidase Copper-Containing 3 JF bioRxiv FD Cold Spring Harbor Laboratory SP 727214 DO 10.1101/727214 A1 Matthias Romauch YR 2019 UL http://biorxiv.org/content/early/2019/08/07/727214.abstract AB Zinc-alpha2-glycoprotein (ZAG) is a major plasma protein whose levels increase in chronic energy-demanding diseases and thus serves as an important clinical biomarker in the diagnosis and prognosis of the development of cachexia. Current knowledge suggests that ZAG mediates progressive weight loss through β-adrenergic signaling in adipocytes, resulting in the activation of lipolysis and fat mobilization. Here, through crosslinking experiments, amine oxidase copper-containing 3 (AOC3) is identified as a novel ZAG binding partner. AOC3 – also known as vascular adhesion protein 1 (VAP-1) and semicarbazide sensitive amine oxidase (SSAO) – deaminates primary amines, thereby generating the corresponding aldehyde, H2O2 and HN3. It is an ectoenzyme largely expressed by adipocytes and induced in endothelial cells during inflammation. Extravasation of immune cells depends on amine oxidase activity and AOC3-derived H2O2 has an insulinogenic effect. The observations described here suggest that ZAG acts as an allosteric inhibitor of AOC3 and interferes with the associated pro-inflammatory and anti-lipolytic functions. Thus, inhibition of the deamination of lipolytic hormone octopamine by AOC3 represents a novel mechanism by which ZAG might stimulate lipolysis. Furthermore, experiments involving overexpression of recombinant ZAG reveal that its glycosylation is co-regulated by oxygen availability and that the pattern of glycosylation affects its inhibitory potential. The newly identified protein interaction between AOC3 and ZAG highlights a previously unknown functional relationship, which may be relevant to inflammation, energy metabolism and the development of cachexia.