TY - JOUR T1 - The tumor suppressor BRCA1/BARD1 complex localizes to the synaptonemal complex and regulates recombination under meiotic dysfunction in <em>Caenorhabditis elegans</em> JF - bioRxiv DO - 10.1101/280909 SP - 280909 AU - Qianyan Li AU - Takamune T. Saito AU - Alison J. Deshong AU - Marina Martinez Garcia AU - Saravanapriah Nadarajan AU - Katherine S. Lawrence AU - Paula M. Checchi AU - Monica P. Colaiacovo AU - JoAnne Engebrecht Y1 - 2018/01/01 UR - http://biorxiv.org/content/early/2018/03/12/280909.abstract N2 - Breast cancer susceptibility gene 1(BRCA1) and binding partner BRCA1-associated RING domain protein 1 (BARD1) form an essential E3 ubiquitin ligase important for DNA damage repair and homologous recombination. In Caenorhabditis elegans BRCA1/BRC-1 and BARD1/BRD-1 orthologs are not essential, but function in DNA damage repair and homologous recombination, as well as in meiosis. In proliferating germ cells and in early meiotic prophase, BRC-1 and BRD-1 are nucleoplasmic, with enrichment at foci that partially overlap with the recombinase RAD-51. In mid-pachytene, BRC-1 and BRD-1 are observed on tracks, before concentrating to the short arms of bivalents, co-localizing with a central region component of the synaptonemal complex. We found that BRD-1 is essential for BRC-1 to associate with chromatin and the synaptonemal complex, but BRC-1 is not required for BRD-1 localization; the complex fails to properly localize in the absence of either meiotic recombination or chromosome synapsis. Inactivation of BRC-1/BRD-1 enhances the embryonic lethality of mutants that perturb chromosome synapsis and crossover recombination, suggesting that BRC-1/BRD-1 plays an important role in monitoring recombination in the context of the synaptonemal complex. We discovered that BRC-1/BRD-1 stabilizes the RAD51 filament when the formation of a crossover-intermediate is disrupted. Further, in the absence of BRC-1/BRD-1 crossover distribution is altered, and under meiotic dysfunction, crossover numbers are perturbed. Together, our studies indicate that BRC-1/BRD-1 localizes to the synaptonemal complex where it serves a checkpoint function to monitor and modulate meiotic recombination.Project Summary Our genomes are passed down from one generation to the next through the specialized cell division program of meiosis. Meiosis is highly regulated to coordinate both the large scale chromosomal and fine scale DNA events to ensure fidelity. We analyzed the role of the tumor suppressor BRCA1/BARD1 complex in meiosis in the worm, Caenorhabditis elegans. We find that BRCA1/BARD1 localizes dynamically to the proteinaeous structure that aligns maternal and paternal chromosomes, where it regulates crossover recombination. Although BRCA1/BARD1 mutants have only subtle meiotic defects, we show that this complex plays a critical role in meiotic recombination when meiosis is perturbed. These results highlight the complexity of ensuring accurate transmission of the genome and uncover the requirement for this conserved complex in meiosis. As women carrying BRCA1 mutations with no indication of cancer have fertility defects, our results provide insight into why BRCA1 mutations impact reproductive success. ER -