RT Journal Article SR Electronic T1 Quantifying genetic effects on disease mediated by assayed gene expression levels JF bioRxiv FD Cold Spring Harbor Laboratory SP 730549 DO 10.1101/730549 A1 Douglas W. Yao A1 Luke J. O’Connor A1 Alkes L. Price A1 Alexander Gusev YR 2019 UL http://biorxiv.org/content/early/2019/08/09/730549.abstract AB Disease variants identified by genome-wide association studies (GWAS) tend to overlap with expression quantitative trait loci (eQTLs). However, it remains unclear whether this overlap is driven by mediation of genetic effects on disease by expression levels, or whether it primarily reflects pleiotropic relationships instead. Here we introduce a new method, mediated expression score regression (MESC), to estimate disease heritability mediated by the cis-genetic component of assayed steady-state gene expression levels, using summary association statistics from GWAS and eQTL studies. We show that MESC produces robust estimates of expression-mediated heritability across a wide range of simulations. We applied MESC to GWAS summary statistics for 42 diseases and complex traits (average N = 323K) and cis-eQTL data across 48 tissues from the GTEx consortium. We determined that a statistically significant but low proportion of disease heritability (mean estimate 11% with S.E. 2%) is mediated by the cis-genetic component of assayed gene expression levels, with substantial variation across diseases (point estimates from 0% to 38%). We further partitioned expression-mediated heritability across various gene sets. We observed an inverse relationship between cis-heritability of expression and disease heritability mediated by expression, suggesting that genes with weaker eQTLs have larger causal effects on disease. Moreover, we observed broad patterns of expression-mediated heritability enrichment across functional gene sets that implicate specific gene sets in disease, including loss-of-function intolerant genes and FDA-approved drug targets. Our results demonstrate that steady-state expression levels in bulk tissues are informative of regulatory disease mechanisms, while also motivating additional assays to more fully capture the regulatory effects of GWAS variants.